

Lecture Notes in Computer Science 3456
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Heinrich Rust

Operational Semantics
for Timed Systems

A Non-standard Approach to Uniform Modeling
of Timed and Hybrid Systems

13

Author

Heinrich Rust
BTU Cottbus, Software-Systemtechnik
Postfach 101344, 03013 Cottbus, Germany
E-mail: heinrich.rust@software-tomography.com

Library of Congress Control Number: 2005923604

CR Subject Classification (1998): D.2, F.1.1, D.3, D.4, F.4

ISSN 0302-9743
ISBN-10 3-540-25576-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25576-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11416166 06/3142 5 4 3 2 1 0

Foreword

This monograph is dedicated to a novel approach for uniform modelling of
timed and hybrid systems. Heinrich Rust presents a time model which allows
for both the description of discrete time steps and continuous processes with
a dense real-number time model. The proposed time model is well suited
to express synchronicity of events in a real-number time model as well as
strict causality by using uniform discrete time steps. Thus it integrates and
reconciles two views of time that are commonly used separately in different
application domains. In many discrete systems time is modelled by discrete
steps of uniform length, in continuous systems time is seen as a dense flow.
The main idea to integrate these different views is a discretization of the dense
real-number time structure by using constant infinitesimal time steps within
each real-number point in time. The underlying mathematical structure of
this time model is based on concepts of Non-standard Analysis as proposed
by Abraham Robinson in the 1950s. The discrete modelling, i.e., the descrip-
tion of sequential discrete algorithms at different abstraction levels, is done
with Abstract State Machines along the formalisms developed by Yuri Gure-
vich and temporal logic. These ingredients produce a rich formal basis for
describing a large variety of systems with quantitative linear time proper-
ties, by seamless integration, refinement and embedding of continuous and
discrete models into one uniform semantic framework called “Non-standard
Timed Abstract State Machines” (NTASM).

On this theoretically well-founded and elegant basis Heinrich Rust dis-
cusses typical problems of time models like “zero time”and“Zeno behaviour,”
interleaving semantics, time bounds and composition of open systems. The
semantic description of two variants of quantitative timed Petri nets, timed
automata and hybrid automata with NTASM models shows the generality of
the NTASM approach.

This book is an important contribution to the research area of time mod-
elling formalisms. The presentation is well-balanced between theoretical elab-
oration and a critical discussion of the applicability of the theoretical results
by means of appropriate case studies. The new temporal semantics proposed
and discussed here can help theoreticians as well as practitioners in gaining
better understanding of time models and in building better notations, models
and tools for the formal treatment of systems where time matters.

Cottbus, January 2005 Claus Lewerentz

Preface

Time is a fascinating subject. It seems to be quite difficult to come to grips
with it. Saint Augustine, in Chapter 14 of Book 11 of the Confessions, said
it in this classical way:

What, then, is time? If no one asks me, I know what it is. If I wish to
explain it to him who asks me, I do not know.

Making our intuitive understanding of a rich phenomenon explicit, we risk
being refuted, by others and by ourselves; and time is an especially rich and
irreducible phenomenon. If the subject of time is dealt with in a theological
or philosophical context (as Augustine did), this is especially clear, since here
time is intimately connected to the concept of existence.

But also in a technical discipline like computer science, time is no sim-
ple subject. Here, the question is not what time is, but how it should be
modelled in different situations. Unfortunately, the difference between these
questions might seem larger than it turns out to be when we consider spe-
cific situations. A model of some phenomenon should abstract from features
which are not important in the class of situations considered, while important
features should be retained in the model. Thus, dealing with the question of
how time should be modelled, we also have to deal with the question of what
are the important features of time in a class of situations.

A model does not only have to be adequate for the modelled phenomena.
If it is to be usable by humans it should also be adequate for their cognitive
capabilities. This is sometimes used to justify striving for models that are as
simple as possible (while sufficient adequacy with respect to the phenomena
is retained). But cognitive simplicity is not an objective trait of a model; with
familiarization, a formerly complex model might become simple for somebody
working with it. If a model for some phenomenon exists which is very rich
in the sense that many other models can be described as special cases of it,
then using this model might sometimes be even simpler than using the special
cases, and the rich model can serve as an integration platform for ideas which
first were used with the more special models. In this way, some unification of
concepts might be possible.

This book presents work in which a fairly novel model of quantitative time
is tried out, one we hope is both general enough and simple enough to be
used as an integration platform for ideas springing from different models of
quantitative time. The model of time is discrete, which means that for each

VIII Preface

moment there is a well-defined next moment. The model of time is uniform,
i.e., the distance between two moments is always the same; and nevertheless
it is dense in the real numbers as they are used in classical mathematics, i.e.,
the resolution induced by the step width is so fine that any real numbered
point in (classical) time is approximated by a time point of the model with
vanishing error.

After you have read how this model of time is made explicit in this book,
you will undoubtedly also see some drawbacks in the approach (several of
them are listed in the summary at the end of the book). If you understand
this list of drawbacks as a refutation of the approach proposed, then in your
eyes I have fallen prey to the problem described above in the citation of
Augustine. Let me confess that I myself am not yet completely sure how to
interpret the drawbacks. This needs some more investigation.

Credits

A considerable number of people helped during the work which resulted in
this book. Claus Lewerentz supported the work from the beginning. My col-
leagues, especially Dirk Beyer, discussed features of timed systems with me
and helped with the presentation, as did in some phases of the work Andreas
Prinz and Angelo Gargantini. Egon Börger and Dino Mandrioli gave hints
regarding the exposition of ideas and the need to discuss some specific fea-
tures of the formalism in more depth. The editors at Springer worked hard
at correcting my English. And finally, my wife, Korinna Hiersche, made sure
that I had time for this work during a parental leave, as did my son Alexander
by his arrival.

Cottbus, December 2004 Heinrich Rust

Contents

1. Overview . 1

2. Context: Formal Methods in Software Engineering 5
2.1 The Place of Formal Methods in Software Engineering 5
2.2 The Role of Mathematics . 6
2.3 Conditions for Using Inconsistencies Productively 7
2.4 Two Sides of Machine Support for Proofs 8
2.5 The Essence of Formal Methods in Software Engineering . . . 9
2.6 Specific and General Formalisms . 10
2.7 Goals and Consequences from the Analysis 12

Part I. Basic Concepts

3. Models of Time and of System Behaviors 15
3.1 Dense and Discrete Time Domains . 15
3.2 Interval Sequences and Subclasses of Hybrid Systems 17
3.3 The Main Idea: Use of Infinitesimals . 19
3.4 Summary . 22

4. Infinitesimals . 23
4.1 The Axiom of Idealization . 24
4.2 The Axiom of Standardization . 25
4.3 The Axiom of Transfer . 25
4.4 More Structure Discerned in Classical Objects 26
4.5 Real-Time Systems with Constant Infinitesimal Steps 28
4.6 Summary . 29

5. Operational Semantics of Discrete Systems 31
5.1 Action Systems . 31
5.2 Abstract State Machines . 32

5.2.1 Some Introductory Examples of ASM Rules 34
5.2.2 Terms . 35
5.2.3 Rules . 36

5.3 Effectivity . 39
5.4 Classes of Symbols . 40

X Contents

5.5 Interaction with the Environment . 42
5.6 Gurevich’s Thesis . 42

5.6.1 Elements of Programming Languages 43
5.6.2 Operationality . 44
5.6.3 No Complications Induced by Formalism 44

5.7 Comparison to Other Formalisms for Discrete Systems 45
5.7.1 Updates vs. Transitions . 45
5.7.2 State Based vs. Event Based Systems 46
5.7.3 Structured vs. Unstructured States 47
5.7.4 Explicit vs. Implicit Nondeterminism 47
5.7.5 Operationality vs. Declarativity 48

5.8 Summary . 48

6. Defining Hybrid Systems with ASMs . 49
6.1 ASMs for the Definition of Classical Hybrid Systems 49

6.1.1 Standard Time ASM Rules
and Hybrid Transition Systems . 49

6.1.2 Infinite Activity . 51
6.1.3 Hesitation and Urgency . 52

6.2 ASMs with Infinitesimal Step Width . 52
6.2.1 A Note on Zeno-ness in NTASMs 55

6.3 Simulation of an STASM by an NTASM 55
6.4 Well-Behaved Rules . 58
6.5 Summary . 62

7. A Notation for a Temporal Logic . 63
7.1 Semantic Domain . 64
7.2 Interval Terms and Focused Predicates 64
7.3 Abbreviations . 66
7.4 Examples of Valid Formulas . 67
7.5 Fairness, Limited Activity

and Other Example Specifications . 68
7.6 On Accountability of a Step to Some Rule,

and an Application to Synchronous Systems 69
7.7 Summary . 72

Part II. Modelling Strategies

8. Concurrency and Reactivity: Interleaving 75
8.1 The Interleaving Approach to Concurrency 76
8.2 Some Remarks on Fairness . 78
8.3 Properties . 79
8.4 Interleaving NTASM Models . 80
8.5 On the Appropriateness of the Interleaving Abstraction 81
8.6 Summary . 82

Contents XI

9. The Synchronous Approach to Concurrency 83
9.1 Reactive Systems as Mealy Automata . 83
9.2 Composing I/O Automata . 86
9.3 Micro-steps of Synchronous Systems as ASMs 90
9.4 Environment Interaction and the Synchrony Hypothesis 93
9.5 Synchronous NTASM Models . 94
9.6 Summary . 95

10. Deadlines . 97
10.1 Synchronous NTASM Systems . 98
10.2 Interleaving NTASM Systems . 101
10.3 Admitting Infinitesimal Delays . 103
10.4 Summary . 106

11. Open Systems . 107
11.1 Receptivity Simplified . 107
11.2 (m,n)-Receptivity . 109
11.3 Summary . 112

12. Making Use of Different Magnitudes of Reals 113
12.1 The Magnitude Concept . 114
12.2 Rule Schemes and the Ripple Counter Example 115
12.3 Making Delays Explicit . 118
12.4 Analyzing a Logical Circuit for Hazards 121
12.5 Modelling Missing Knowledge Explicitly 124
12.6 Hazards Resulting from the Infinitesimal Discretization 126
12.7 Summary . 127

Part III. Applications

13. A Case Study: Fischer’s Protocol . 131
13.1 A Hybrid Abstract State Machine

Describing Fischer’s Protocol . 131
13.2 Specification and Proof of the Mutex Property 134
13.3 Infinitesimality of Step-Width

and Plausibility of Assumptions . 138
13.4 Summary . 139

14. An ASM Meta-model for Petri Nets with Timing 141
14.1 ASM Models of Discrete Nets . 141
14.2 Quantitatively Timed Nets . 143
14.3 STASM Models of Doubly Timed Nets 145

14.3.1 An Interleaving Dynamics for Doubly Timed Nets . . . 145
14.3.2 A Maximal Progress Dynamics

for Doubly Timed Nets . 147
14.3.3 Discussion of the STASM Models

of Doubly Timed Nets . 149

XII Contents

14.4 Comparison of STASM and NTASM Semantics 152
14.4.1 Well-Behavedness of the Interleaving Dynamics Rule

for Doubly Timed Petri Nets . 152
14.4.2 A Well-Behaved Rule for Interleaving Dynamics

of Doubly Timed Petri Nets . 155
14.5 Summary . 159

15. An ASM Meta-model for Timed and Hybrid Automata . . . 161
15.1 An STASM Model of Hybrid Automata 162
15.2 Comments on the Modelling Choices . 166
15.3 Timed Automata and Their Well-Behavedness 166
15.4 Well-Behavedness of Hybrid Automata 169
15.5 Summary . 172

16. A Production Cell with Timing . 173
16.1 Introduction . 173
16.2 Task Description . 174
16.3 Requirements to Be Fulfilled by the Control Program 178
16.4 Direct Consequences from the Task Description 179
16.5 An Abstract Control Program . 180
16.6 Schedules for Variable-Order Programs 183
16.7 One Crane, Order of Processing Units Fixed 183
16.8 Executing the Current Schedule . 185
16.9 Two Cranes, Order of Processing Units Fixed 187

16.9.1 Splitting a Schedule into Segments 187
16.9.2 The Active and the Passive Crane and Their Tasks . . 188
16.9.3 Resting Position, Target Position and Initialization . . 189
16.9.4 Specifics of Crane Behavior . 191
16.9.5 Waiting Times in a Two-Crane System 195

16.10 Are the System Properties Ensured? . 199
16.11 Summary . 201

Part IV. Summary

17. Summary . 205

A. Common Notation . 211
A.1 Non-standard Quantifiers and Predicates 211
A.2 Various Kinds of Expressions . 211
A.3 Various Expressions for Functions and Sets of Functions 211
A.4 Some Common Sets . 212
A.5 Some Definitions . 212

References . 215

Index . 221

1. Overview

This work introduces a novel approach to modelling timed systems. The main
idea consists of a new model of time which is both discrete and dense in the
real numbers. This allows to use a discrete base formalism for the description
of timed algorithms where system behaviors can be interpreted very straight-
forwardly in a timed manner without sacrificing that much precision.

Chapter 2 presents the context of our work, which is our understand-
ing of the role of formal methods in the software development process. The
main point in that chapter is that “formal methods” does not just mean the
use of concepts from mathematics explicitly in software engineering, but the
use of such concepts in order to deepen one’s understanding of a software
engineering problem and its solution, and to express this understanding un-
ambiguously and consistently. From this contextual frame, we derive some
consequences for the formalism to be developed.

Part I introduces basic concepts: Our model of time, the discrete base
formalism on which we build, and a notation for a temporal logic.

Chapter 3 discusses different models of linear time and introduces a new
model which avoids the main problems of classical discrete and continuous
models of linear time. The main idea consists in the use of infinitesimals: The
flow of time is conceptualized as a sequence of steps of identical infinitesimal
length, i.e., we use an infinitesimal discretization of real numbered time.

Chapter 4 presents a short introduction to the number concept we use,
which is Nelson’s axiomatic approach to infinitesimality.

Chapter 5 presents a variant of abstract state machines (ASMs) as a
base formalism for giving the operational semantics of discrete systems. This
variant admits two kinds of composition: synchronous and asynchronous. We
introduce a semantics for ASMs which is compositional for both kinds of
composition, which we call “action semantics”. We give reasons for using
ASMs as the discrete base formalism.

Chapter 6 describes how we combine ASMs and our model of time in order
to describe hybrid systems. Other applications of ASMs in the description of
timed and hybrid systems specify the timing independently from the discrete
changes – in our approach, the timing is derived from the discrete semantics.
An approach using a classical model of time (standard timed ASMs, STASMs)
is given first as a comparison; then we use our model of time (non-standard

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_1,
© Springer-Verlag Berlin Heidelberg 2005

2 1. Overview

time ASMs, NTASMs) and show that the infinitesimal discretization might
essentially change the semantics of an algorithm. We describe what simulation
means for two algorithms given as a STASM and an NTASM, and we intro-
duce a concept which relates the STASM interpretation of an algorithm and
the NTASM interpretation of an algorithm: an algorithm is “well-behaved” if
and only if each run of its STASM interpretation can be mimicked by a run
of its NTASM interpretation.

Chapter 7 introduces a notation for a temporal logic which allows us to
specify many properties of NTASM systems succinctly. It uses ideas from the
Duration Calculus, an interval-based temporal logic, and transfers them to
the infinitesimally discretized time domain.

Part II introduces basic modelling strategies for timed systems – interleav-
ing and synchronous composition, deadlines and openness – and it describes
how different magnitudes of hyperreals can be used.

Many modelling formalisms used for describing timed systems support ei-
ther interleaving or synchronous composition. Our formalism supports both.
Chapters 8 and 9 describe how interleaving composition and synchronous
composition of timed systems are expressed without formal overheads. We
point out how the typical problems of synchronous formalisms, those re-
garding causality and micro-steps, appear in our framework, and we discuss
some specific modelling problems of interleaving and synchronous systems of
NTASMs.

The concepts of deadlines, urgency and openness pose special problems
in the NTASM framework, which are discussed in Chaps. 10 and 11.

Chapter 12 presents a first application: We model hardware on the gate
level with timing-enhanced ASMs. We illustrate illustrated how different mag-
nitudes of the hyperreals can be used to express in the model the fact that
some delays are considered to be negligible with respect to others, but if the
system is considered using a finer timescale some previously neglected delays
can become considerable.

Part III describes some applications of our approach.
Chapter 13 presents an NTASM model of Fischer’s real-time based syn-

chronization protocol, and a purely discrete correctness proof made possible
by our model of time.

Chapters 14 and 15 present meta-models, i.e., STASM and NTASM se-
mantics of other modelling formalisms, in order to make it plausible that our
model can express other formalisms with minimal formal overheads. Chap-
ter 14 investigates two forms of quantitatively timed Petri nets, making ex-
plicit their differences in an operational way by supporting both variants in a
common formalism. Chapter 15 discusses timed automata. In both chapters,
we illustrate how the concept of well-behavedness can be lifted from the base
formalism to the expressed formalism.

Chapter 16 presents a larger case study, which is inspired by real-world
requirements. We describe the control program for a flexible and timing-

1. Overview 3

enhanced production cell. It will become clear that the necessary timing
properties are very simply expressed in our formalism, and the flexibility
with respect to the abstraction level chosen comes in handy when common
properties of different variants of the system are described.

Part IV presents a summary of our work.
The appendix collects the definition of some often used notation.

2. Context:

Formal Methods in Software Engineering

Before we go into the details of the formalisms which we propose for modelling
some classes of real-time and hybrid systems, we describe the role we give to
formal methods in software engineering and some relevant features of formal
methods which seem especially useful to us. This partly is an elaboration of
ideas first developed by the author in [Rus94]. This discussion will present
the context for the results described later, and it will be used to derive some
desiderata for the formalism to be used according to our understanding of
formal methods.

2.1 The Place of Formal Methods
in Software Engineering

The task in software engineering is to build computerized systems which help
to solve real-world tasks, typically in groups and under economic constraints.
In these tasks, three ontological spheres are important:

– The empirical socio-physical context in which the system to be built
is to be used. This context is the application area for the system.

– The intuitive understanding of the task, of the computer’s role in it
and the way of building the system so that it can fulfill its role.

– The expression of the intuitive understanding which can be discussed
by others or operationalized by execution on a computer.

In a typical software engineering project, the following interplay exists be-
tween the three spheres:

– The application area, i.e., the empirical socio-physical context induces the
intuitive understanding of the task and its solution.

– The intuitive understanding is expressed in some way.
– Inconsistencies in the expression might be caused by ambiguities or in-

consistencies in the intuitive understanding and by objective conflicts of
interest in the socio-physical context, and they are opportunities for clear-
ing up one’s thoughts.

– Operationalizing program-text expressions and installing them in the ap-
plication area change the latter, and this might in turn change the intuitive
understanding.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_2,
© Springer-Verlag Berlin Heidelberg 2005

6 2. Context: Formal Methods in Software Engineering

Formal methods deal predominantly with the relation between the sphere of
the intuitive understanding and the sphere of the expression of the under-
standing: They help to ensure that an intuitive understanding of something is
more or less consistent by expressing it in a strictly defined notational system
and checking this for plausibility and consistency. Only an expressed under-
standing can be exposed to public scrutiny by colleagues and customers, or to
consistency checks using mathematical proofs, or to automated consistency
checks using a computerized tool, e.g., a syntax checker, or to the execution
of a program in order to compare the behavior of a system in the test cases
with one’s expectations.

2.2 The Role of Mathematics

Mathematics can play a special role in the interplay between an intuitive
understanding and its expression. This is the main idea of formal methods.
Dijkstra [Dij65] puts it thus: In spite of all its deficiencies, mathematical rea-
soning presents an outstanding model of how to grasp extremely complicated
structures with a brain with limited capacity. For Mills [Mil75], the mathe-
matically inspired structured programming approach has the potential that
the professional programmer of tomorrow will remember, more or less vividly,
every error in his career. Lamport [Lam97] gives a reason for the fact that
mathematics is a good tool for grasping large and complicated structures: He
calls it “compositionality”. This means that mathematics provides one with
the methods for putting a large number of “small” insights together to form
a “large” and possibly more general insight.

There are also voices critical of putting too much stress on mathematics,
raising important points. Gerhart and Yelowitz [GY76] give several examples
of published proofs of algorithms which nevertheless contain errors. Thus, the
application of mathematics in software engineering does not seem to be fool
proof.

DeMillo, Lipton and Perlis [DLP79] claim that the social processes lead-
ing to belief in the truth of a mathematical theorem just do not exist for
proofs of programs, since no colleague is interested in checking these proofs.
Thus, it must be shown that even without social proof-checking processes,
formal methods might help in some way. Naur [Nau82, Nau85] stresses that
unambiguity in the informal expression of intuitive ideas is in danger of being
seen as irrelevant if strict mathematization is strived for. Thus, we have to
check how to avoid the danger of over-formalizing.

But how can the expression of one’s intuitive understanding in a formal-
ism, i.e., in a notation whose syntax and semantics is defined with mathe-
matical exactness, help in sharpening the intuitive understanding? We see
two typical features of formalisms at work: (1) The formalism might re-
quire decisions where the intuition is not (yet) unambiguous, and (2) the
implicit inconsistencies of the intuitive understanding can be made explicit

2.3 Conditions for Using Inconsistencies Productively 7

in the formalized expression by doing consistency checks. Both points are, of
course, only relevant if the critical features of the intuitive understanding are
not abstracted from in the used formalism. We discuss these two points.

Unambiguity of concepts is a feature of many formalisms. It results from
the strictness of well-established conventions for the interpretation of ele-
ments of the formalism. This makes it plausible that formal specification
alone, without any attempts to formally prove any consistencies in what
one has expressed, can be helpful in clearing up one’s thoughts. This
point has been stressed by Hall [Hal90] and Wing [Win90].
But, of course, also formal notations must be interpreted if they are used
for expressing intuitive ideas about the empirical world. The danger that
ambiguities arise is just less than in everyday language since the context
in which the formalized notation is used is much more restricted, and the
interpretational conventions which are associated with a well-described
formalism also help to resolve ambiguities. An example: If the intuition
is that some algorithm computes its result quickly, this intuition must
be made more precise if it is to be expressed in some formalism. For
example, an O-calculus expression or an absolute time might be given,
where, for both, there exist conventions for interpreting the expressions.

Explication of inconsistencies: The unambiguity of mathematical con-
cepts makes it possible to make also very subtle inconsistencies in a larger
description explicit – at least relative to the base formalism. This means
that if the basic understanding is inconsistent in some features and these
features are not abstracted away in the formalization, or if ambiguities in
the intuitive understanding are resolved differently when different parts
are expressed in the formalism, there is a good chance that the formal
expression is inconsistent.
In order to be able to find such inconsistencies, the expression must have
some (allegedly) redundant parts describing critical features of the intu-
itive understanding, or, put more simply: the same idea must be expressed
twice, but not in an identical way. Examples of such consistency checks
using alleged redundancy are (1) proofs are given showing the consis-
tency of axioms and theorems in a deductive theory; (2) an operational
system description fulfills a declarative one; (3) a low-level operational
system description refines a high-level one; or (4) a compiler checks the
type correctness of a typed programming language.

2.3 Conditions for Using Inconsistencies Productively

If inconsistencies in the formalized expression are disclosed, this is an op-
portunity to refine one’s intuitive understanding or its translation into the
formalism. It is in this way that the use of a formalism can help to deepen
the intuitive understanding and can ensure that some basic quality criteria
are fulfilled. There are several necessary conditions for this to work:

8 2. Context: Formal Methods in Software Engineering

– Familiarity with the formalism is necessary; otherwise, it is not ensured
that the interpretational conventions for the elements of the formalism are
respected, and, thus, unambiguity is not necessarily ensured.

– The consistency checks which are made possible by the use of the formalism
have to be performed.

– The ideas must be expressed at an abstraction level which does not ab-
stract from the problematic features of the intuitive ideas, but it should be
abstract enough to make the expression as concise as possible in order to
allow meaningful consistency checks.

Consistency checks associated with formalisms can expose subtle incon-
sistencies in the expression. Because of this, the successful completion of a
strictly defined set of consistency checks is a hard criterion for some basic
quality of a formalized expression: A formalism might require that all the-
orems are proved, or that each expression in a program text must be type
correct, etc. These objective criteria can help the software engineer to partly
replace the social processes ensuring quality in mathematics (as hinted at by
DeMillo, Lipton and Perlis) by individual processes.

Often, interesting consistency checks of formalisms are not recursive.
Thus, consistency checking comes down to constructing proofs. Machine sup-
port for checking the proofs is helpful for bookkeeping about finished and un-
finished consistency checks. Moser and Melliar-Smith [MMS90] describe how
the clumsiness of the proof checkers might have the positive consequence that
the ideas expressed must be quite simple in order to allow machine-checkable
proofs. This indirect effect of mechanized proof checking support has obvi-
ously several good consequences: The engineer learns to strive for simplicity,
which can lead to easier exposition of errors and to easier communication.

2.4 Two Sides of Machine Support for Proofs

Machine support for consistency checks has two sides: One is that the com-
pletion criterion for the consistency checks can be made more objective, even
without social processes for checking the work of the software engineer in
place: The computer can, partly, fulfill the role of colleagues. The other
side is that the description might just be tweaked until the checker does
not complain any longer, without necessarily ensuring that the description
continues to correspond to the intuition. In order to define better what we
understand by “Formal Methods in Software Engineering”, we describe two
extreme strategies of how a software engineer can react to inconsistencies
made explicit by a consistency check:

– One strategy reacts to syntax errors and test failures by taking them as
hints to problems with the intuitive understanding one has of the prob-
lem or its solution. Each such inconsistency is taken as an opportunity to
deepen one’s intuitive understanding, by first trying to really understand
the inconsistency, before the expression of the understanding is changed.

2.5 The Essence of Formal Methods in Software Engineering 9

– The other strategy basically considers each inconsistency as resulting from
a typo which can be fixed by just changing a bit of the expression. This
might lead to a trial-and-error strategy of trying to get the program text
accepted by the compiler or the consistency checker and to make the tests
pass.

These two strategies are possible also in the use of automated provers or proof
checkers. They represent two attitudes with respect to inconsistencies: to be
surprised by them and to analyze them intensely in order to get at a possible
deeper cause, or to expect them and explain them away as shallow. In our
eyes, only the first attitude deserves the name “formal method”. Thus, we
see what characterizes a method as formal less a question of using a formally
defined notation or of using proof checkers, etc., but as a special state of
mind when dealing with formalized descriptions. The next section explains
this position.

2.5 The Essence of Formal Methods
in Software Engineering

Formal methods might be used in software engineering with different goals
in mind:

– Formal methods can help to deepen one’s intuitive understanding
of a problem or its solution by forcing one to be unambiguous when the
understanding is expressed in the formalism and by allowing one to do
consistency checks which also expose subtle inconsistencies.

– Formal methods might be used because they help in communicating
intuitive ideas. The unambiguity induced by interpretational conventions
helps with this. This is the main reason for using formalized notations
for specifications of problems and solutions. Consistency proofs are not of
paramount importance in this use of formal methods.

– They might be used because one believes in a correspondence theory of
truth: If the axioms of some deductive system are true in an application
area for some interpretation of the symbols, and if the deductive system is
sound, the theorems of the system are also true with the same interpreta-
tion in the application area. It is possible to stay completely in the formal
sphere because each possible reasoning in the formalism corresponds to a
relation of facts in the application area, and this intermediate relation must
not be checked: the soundness of the deductive system guarantees this.
That a formalism can be used in this way is no triviality: For a priori
unformalized application areas, the soundness of a formalism is an infor-
mal concept; it can be checked only inductively, i.e., by experience, and
it depends on (informal) conventions for interpreting the symbols of the
formalism in the application area.

10 2. Context: Formal Methods in Software Engineering

But if the use conditions of a formalism are given in some application area,
and the fulfillment of the axioms is easily checked, but the theorems are
difficult to understand, then purely formal proofs can help to ensure the
truth of the theorems.
For this use of formal methods, not much insight is necessary after the
soundness of the proof system is inductively ensured and the interpretation
of formalism elements is fixed. In this way of using formal methods, even
completely automatic proof algorithms, like the currently fashionable ones
based on symbolic model checking, are sensible.

We see the second and third uses of formal methods as derived from the
first one. Purely formal applicability of a formalism in an application area is
only sensible if the (informal) connection between the application area and
the formalism is inductively ensured. The social functions of formalisms are
also based on the possibility of getting a good intuitive understanding of the
subject area and then expressing it for scrutiny by others or comparing it
with the expressions others give of their understanding. Thus, for us, the
essence of formal methods can be described in the following way:

Formal methods in software engineering consist in the use of
mathematics in order to deepen one’s intuitive understand-
ing of a software-engineering problem and its solution, and
in order to express this understanding unambiguously and
consistently.

Thus, to apply formal methods it is not enough to use some strictly defined
notation – the goal of such a use is important: the striving to make one’s
intuitive understanding unambiguous and consistent. The use of mathematics
is just one of the best tools we know today that support this effort.

2.6 Specific and General Formalisms

A formalism is always specific to some application area, but this area can be
chosen to be quite small or quite large. Both choices have their benefits.

A formalism optimized for a specific application area can include applica-
tion-specific experiences. It can make it easy to express adequate conceptu-
alizations of problems and solutions in the area, and it can make it difficult
to express inadequate conceptualizations. The formalism can help to deepen
one’s understanding by guiding its expression in directions which have proved
helpful in the past for the application area considered. As a relevant exam-
ple, consider formalisms for concurrent systems based on interleaving (like
Lamport’s [Lam94a, Lam94b] and Manna/Pnueli’s [MP92, MP95]) vs. for-
malisms for concurrent systems based on a synchronous approach (like Esterel
[BdS91] or Lustre [HCP91]; compare also [Hal93]). The former make it fairly
easy to model loosely connected systems and asynchronous compositions of
systems, and typically they contain elements to model the fairness constraints
of the systems; but each synchronization must be made explicit. The other

2.6 Specific and General Formalisms 11

formalisms make it fairly easy to model synchronous compositions of systems,
which is often adequate for controllers or hardware systems, but they often
do not deal with nondeterminism or fairness, since these are not important
in the typical application areas for these formalisms.

The other strategy is to strive for more general formalisms. We will base
our approach on abstract state machines (ASMs) [Gur88, Gur93, Gur95a,
Gur97], which belong to this second class. ASMs started as an attempt to
illustrate a strengthened Church-Turing thesis: ASMs are proposed as a for-
malism which can be used to express any discrete sequential algorithm on any
abstraction level [Gur99] (this is the ASM thesis). This means that an activ-
ity which is conceptually done in one step can also be executed in the model
in one step. This is in contrast to Turing machines, for example, where also
quite simple operations might need any finite number of steps. In fact, ASMs
are a formalism which is surprisingly expressive with a very simple structure.
A large number of case studies have been performed which corroborate the
ASM thesis [BH98].

Thus, ASMs are meant to be usable as a framework in many different
application areas. One can not expect much guidance toward appropriate
solutions from such a general formalism – this is the drawback of a general
formalism. But one can expect that the formalism does not restrict unduly
one’s intuition when it is expressed in the formalism. Thus, such a formalism
is meant to be a flexible tool for many application areas.

Gurevich says that sequential algorithms can be described as ASMs essen-
tially coding free. This is to be understood as being in contrast to the Turing
machine model or the register machine model of effective computation, where
the data part of the algorithm has to be encoded for representation on a tape
with a finite alphabet, or as a number. The claim to coding-freedom does not
apply to features which in other formalisms stay implicit, like control flow,
procedure calls or variable bindings: These have to be made explicit when
an ASM is used to model an algorithm, and, thus, they have to be encoded
with the simple means provided by ASMs.

No formalism can be used for all application areas – no formalism but
perhaps one: mathematics in general, if considered as a formalism. Gure-
vich pleads for not restricting one’s formalism when expressing one’s ideas
[Gur95b], in order to be able to express the ideas as faithfully as possible. This
means that a given formalism should not be considered as fixed but should
be used as a framework, i.e., as a collection of ideas which might be helpful,
but which might also be changed or extended if this seems adequate for an
application area. This is what we will do with ASMs: They are meant to be
used to model primarily sequential discrete systems, even though variants
have been described for concurrent and timed systems.

A problem with the framework approach for formalisms is that if the
variants are too different, experience with one variant does not help much
with another variant. We will use a variant of the basic sequential ASM
formalism.

12 2. Context: Formal Methods in Software Engineering

2.7 Goals and Consequences from the Analysis

The goal we pursue in this work is to develop a formalism for the description
of quantitatively timed systems based on a linear model of time, since this
is the most popular model of quantitative time. This formalism should avoid
several problems of existing formalisms, which we will detail a little.

The formalism should be sufficiently general so that it can be used to
express other formalisms used for the description of systems in linear quan-
titative time with few formal overheads, i.e., it should not be necessary to
introduce additional model components only in order to allow the expression.
This allows our formalism to be used for the comparison of the relative merits
of other formalisms by expressing them in the same basic framework.

The formalism should be sufficiently flexible so that it can be used to
express algorithms in linear quantitative time essentially coding free with
respect to the data part of the algorithm. This means that we strive for a
general rather than for a more specific formalism.

Discreteness of the time model used in the formalism is attractive because
discrete algorithms are familiar to computer scientists.

We do not want to restrict the kinds of consistency checks we perform
on the models expressed – any concept from mathematics is allowed. This
goal results more from missing than from existing knowledge: We do not yet
know enough about checking timed systems for consistency so that we could
be sure that the methods we propose would suffice.

We do not want to fix an abstraction level for the algorithms to be de-
scribed – it should be possible to choose this level high enough so that relevant
ideas are concisely expressed, and low enough so that one does not have to
abstract from the relevant ideas.

3. Models of Time and of System Behaviors

In computer science, system behaviors are often represented as a function
from some time domain T to some state domain A. We will also use this
approach.

We will represent states from A as assignments of values from some fixed
universe U to value carriers. We will use first-order structures to represent
states, as proposed by Gurevich. In that approach, the carriers of values are
“locations”, which will be defined later (see Chap. 5). We denote the set of
locations by L. Then, the set A of states consists of the functions L → U or
of a subset of such functions.

The locations represent the quantities which are relevant in the system
description. We will deal with systems in which in classical conceptualizations
some quantities change discretely and others might also change continuously
with time. We call such systems “hybrid systems”.

3.1 Dense and Discrete Time Domains

For the time domain, a large number of different approaches are used in
computer science. Koymans [Koy92] presents an overview of different basic
principles which have been proposed for acting as the bases for models of
time. To these belong linear and branching models of time, with respect
to future and past; there are discrete and dense models; there are models
of time admitting a metric on points in time (which we call quantitative
models); and there are mere qualitative models. In this work, we focus on
linear models of quantitative time. Linear models are those most often
used, also in influential approaches such as Manna and Pnueli [MP92, MP95]
and Lamport [Lam94a, Lam94b]. We focus on quantitative models of time
because qualitative models of time are already very well investigated.

Often, quantitative time is modelled as a special group or monoid. For ex-
ample, Nicollin and Sifakis [NS92] assume that time is a commutative monoid
(D, +, 0) with d + d′ = d ↔ d′ = 0 and where the pre-order ≤ defined by
d ≤ d′ ⇔def ∃d′′ : d + d′′ = d′ is a total order. Nicollin and Sifakis see the
main difference in models of time in discreteness vs. denseness. Discreteness
means that if some point in time has a follower, there is a smallest follower.
Denseness means that between any two different points in time, there is a

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_3,
© Springer-Verlag Berlin Heidelberg 2005

16 3. Models of Time and of System Behaviors

third point different from both. A typical example for a discrete model of
time is N0, and a typical example for a dense model of time is R

+
0 . The com-

pleteness property of R
+
0 is typically not used in applications of the time

model. A typical example for a model of time which is used in the description
of hybrid systems is sequences of intervals from R

+
0 [LSVW96]. The latter is

the most advanced classical model of time for hybrid systems, and so we will
use it later in the classical reference approach we use for comparison with
our non-classical approach based on infinitesimals. This time model will be
described in detail in Sect. 3.2.

Discrete models of time are attractive because they are so common in
computer science, but there also exists a downside: The following problems
in the use of a discrete time model are sometimes given [Hoo92, Jos92]:

– Independent events can occur arbitrarily near. In order to express this in
the model, a dense structure is necessary.

– Reactive systems often operate in an environment which contains (piece-
wise) continuously changing components, and they are often modelled as
functions from R to some state space. In order to describe a reactive system
in such an environment, it is convenient to be able to use the natural time
domain of the environment in the description of the context of the reactive
system.

– For composition of independently specified or developed units, a common
time base must be found. A dense model of time avoids this problem.

– Action refinement is difficult in a discrete model of time [Ben98].

Basically, R is a model of time suggested by our intuition from classical
physics, which makes it attractive to use its features also for reactive systems.

The main benefits of a discrete model of time are the following:

– It is intuitively very attractive to have a well-determined next state for
each state in a system behavior. This also allows us to use well-developed
methods for specification, description and analysis of (untimed) discrete
systems more or less unchanged for the work with timed systems. For
example, simple induction can be used to prove invariants.

– When dense models of time are used, the phenomenon of Zeno-ness [AL92]
has to be dealt with. This is an artifact of formalisms which have been
developed for the discrete domain and are used for dense quantitative time.
A system behavior is called “Zeno” if it consists of an infinite sequence of
states with strictly increasing time stamps for which there exists an upper
bound for the time stamps. Only dense models of time allow this artifact to
occur, and it must be handled in some way, since Zeno behaviors have to be
excluded from consideration: they are considered to be unimplementable.
Zeno-ness is a variant of infinite activity [NS92]: This is a property of a
system behavior in which in some bounded interval of real time an infinite
number of discrete transitions takes place. In approaches to the description
of real-time systems based on functions from R to some state domain, the
problem underlying the Zeno-ness phenomenon occurs in this guise.

3.2 Interval Sequences and Subclasses of Hybrid Systems 17

A side note: The concept of infinite activity is not the only sensible way to
formalize the intuition that systems which try to do too much in too short
time are not implementable. A perhaps better formalization of the idea is
the more restrictive concept of unbounded activity [NS92]. As an example,
consider a system in which in each time interval from n to n+1 (for n ∈ N),
exactly n discrete events take place. Such a system is not Zeno (since in each
finite interval, only a finite number of discrete events take place; specifically,
the number of events in an interval which is bounded from above by n ∈ N

is smaller than n2); but it shows unbounded activity in the sense that for
each bound n ∈ N, there is an interval of length 1 so that more than n
discrete events take place in that interval (for example take the interval
from n+1 to n+2). While this system is not Zeno, it can nevertheless not
be considered implementable; thus, boundedness of activity seems to be a
more appropriate abstract concept of implementability of a system with
respect to the amount of activity in finite intervals of time.

3.2 Interval Sequences
and Subclasses of Hybrid Systems

The typical way of representing system behaviors of real time or, more gener-
ally, hybrid systems is as sequences of (mostly closed) intervals over R. Each
such interval represents a (possibly) continuous change of some system quan-
tity; the transition from the end point of one interval to the start point of
the next interval represents a discrete transition. The typical way to model
time in this framework is the following:

– If infinitely many discrete transitions take place, time is modelled by in-
finitely many intervals [li, ui] for i ∈ N0 with
– li, ui ∈ R

+
0 (a dense, even complete model of time is used),

– l0 = 0 (time starts at zero),
– li ≤ ui (each interval spans the time distance ui − li; point intervals are

allowed and represent states which are immediately left as soon as they
are assumed),

– ui = li+1 (a discrete transition takes no “real” time), and
– the sequence of ui diverges (this requirement ensures that Zeno behaviors

do not occur). This requirement avoids the artifact of a system in which
an infinite number of discrete transitions takes place in a finite span of
time.

– If only n ∈ N0 discrete transitions take place, the time is represented by
n + 1 intervals, the first n of which are of the form [li, ui], and the last is
of the same form or of the form [ln,∞). The conditions on li and ui, for
the i’s for which they exist, are as for the first case (of course, without the
non-Zeno requirement). The second form of the last interval represents the
infinite time span in which no discrete transition takes place.

18 3. Models of Time and of System Behaviors

The fact that point intervals are allowed means that instantaneous transitions
from some state just entered can be modelled. This abstraction is very com-
mon for synchronous programming languages (e.g., [BdS91, BG92, Hal93]).

Systems modelled in interval sequence time are often modelled as tran-
sition systems with two types of transitions: There are discrete transitions
which take no time, and there are time transitions which might take time.
We will describe in Sect. 6.1.1 a variant of this approach.

Hybrid system behaviors are described by associating a state from A with
each element of each interval. Depending on the type of hybrid system, the
kind of change during the intervals is somehow restricted. The different kinds
of restrictions typically distinguish between discretely changing system
components which can only be changed in discrete transitions and keep their
value during intervals, and (possibly) continuously changing system com-
ponents, which can change both in discrete transitions and during intervals.
Typical restrictions for the changes during the intervals are the following:

– The only system quantity allowed to change continuously might be the
time (which we denote by the symbol now). Abadi and Lamport [AL92]
call this restriction convenient, perhaps because it fixes the values of all
quantities for each interval element.

– Another approach is to allow any number of (continuously changing) clocks,
all of them running with the same speed (equal to 1) all the time, but which
might be reset from time to time. This is the idea used for timed automata
[AD94]. All other quantities are discrete.

– A third approach is to associate a speed with each continuously chang-
ing quantity, where the quantities representing the speed only change dis-
cretely. Sometimes these systems are called “linear”, but we prefer to call
them PCD systems (for piecewise constant derivative). The formalism on
which HyTech [HHWT95] is based uses this approach. Because of the lin-
earity of all continuously changing quantities, the values at the interval end
points suffice to represent the values at all intermediate points.

– A fourth approach describes the system development during interval time
spans very generally by “trajectories” [Zei76, Chap. 9] [LSVW96] [Lyn96,
Chap. 23]. These trajectories have to obey some general conditions like
additivity (a trajectory leading to some state and a trajectory leaving from
the same state can be concatenated to another trajectory with a length
which is the sum of the lengths of the components) or time determinacy
(the state assumed by the system at a point inside an interval is completely
determined by the start state of the interval and the time span which has
been spent since the start state of the interval), but apart from this they can
be chosen quite freely. Not even continuity is required when this approach
is used.

All these variants have in common that the changes during time intervals do
not count as “activity” in the sense of finite or infinite activity in bounded
time intervals. For this, only the discrete transitions are relevant. System

3.3 The Main Idea: Use of Infinitesimals 19

changes which are represented in intervals are meant to describe what can
change just by the flow of time, needing no extra “system activity”.

The interval-sequence approach to modelling hybrid systems of different
kinds is quite flexible, but it also has some drawbacks:

– A fairly complicated, non-uniform model of time is used.
It would be nice to have a uniform model of time also for the description
of hybrid systems.

– Discrete transitions take no time at all. This contrafactual assumption is a
helpful abstraction in some situations, employed successfully in the appli-
cation of synchronous languages; but it leads to problems with causality in
the definition of such languages (see [HG92] for an analysis of the general
problem, and consider the different attempts to get at a satisfying seman-
tics for ESTEREL [BG92, Ber99] or for StateCharts [Har87, vdB94]).
It would be nice to have a model of time which can express both causality
and instantaneity of transitions in an intuitive way.

– Composition of independently developed deterministic systems is a prob-
lem: If in two such systems a discrete transition takes place at the same
real-numbered moment, we do not know which takes place before the other,
if they take place synchronously, or if there is just some partial overlap be-
tween the transitions. This is because transitions belonging to the same
moment are only in a relative order if they belong to the same system
behavior. A typical way to deal with this is by using nondeterminism to
express the missing knowledge about the relative orders of the transitions.
For deterministic systems, this artifact might be inconvenient.
It would be nice to be able to use, if needed, an absolute ordering for
discrete transitions taking place at the same point in real time.

The last three points mentioned three goals to be fulfilled by our model
of time, which will be a discrete model. In addition, we want to avoid the
problems of common discrete models of time mentioned earlier. We will reach
our goals by using infinitesimals.

3.3 The Main Idea: Use of Infinitesimals

Our idea is to investigate a model of time which allows us to model hybrid
systems and seems at least to solve the problems of interval sequences for
PCD systems. We will use the multiples of some infinitesimal as the time do-
main, or, expressed in another way, we use simply the natural numbers, only
scaled by some infinitesimal number. This is a discrete and uniform model
of time, giving to each transition an absolute position, which is nevertheless
dense in the real numbers, and which allows us to model both causality (by
representing causes by states and/or transitions which come earlier than their
effects) and instantaneity (by infinitesimal time spans) if the behaviors are
considered at the level of the real numbers. A system model based on this

20 3. Models of Time and of System Behaviors

time model can approximate behaviors defined in the reals with infinitesimal
exactness and allows action refinement. Also phases of continuous change can
be described with step-by-step actions of some underlying discrete formalism,
which makes a simple induction principle possible for proving invariants.

The main motivation to investigate the use of infinitesimals as the base
of the time domain is concisely given in the preface of [ACH97]:

The nonstandard framework allows many informal ideas (that could loosely
be described as idealization) to be made precise and tractable. For example,
the real line can (in this framework) be treated simultaneously as both a
continuum and a discrete set of points; and a similar dual approach can be
used to link the notions infinite and finite, rough and smooth.

Our initial hope was to be able to use well-established discrete techniques for
analysis of discrete systems in order to understand systems with continuously
changing components. During the investigation, another concept arose as
important: Time as multiples of an infinitesimal allows us to investigate the
problems of the discretization of a solution based on the abstraction of zero-
time discrete steps independently from the question of a minimal step width.
The concept of well-behavedness as defined and investigated in later chapters
is the formalization of this idea.

One technical problem of the interval-sequence approach is that discrete
transitions lead to several states being associated with the same point in“real”
time. There are temporal logics which are based on the idea that at most one
state is associated with each point in time. Gargantini et al. [GMM99] use
such a logic. The interval-sequence approach contradicts the intuition that
a system development can be adequately described by a function from a
time domain to a state domain (of course, this could be repaired by a more
complicated time domain, e.g., using R × N, which is unattractive because
of other reasons). Gargantini et al. use, for system specification, a temporal
logic which uses the temporal operator DIST(P ,t) for a predicate P and a real
number t; if interpreted at a time x of a system development, this operator
expresses that at time x+ t the predicate P holds. This operator is obviously
best suited to models of system behaviors in which at most one state is as-
sociated with each moment of time. For interval-sequence models of system
behaviors this is not the case, which makes the use of the operator difficult.
Gargantini et al. propose to use a time model based on infinitesimals for solv-
ing the problem. A zero-time transition of the interval-sequence approach is
replaced by an infinitesimal-time transition which takes strictly positive time.
Gargantini et al. claim that this approach allows a simpler axiomatization
than the zero-time approach; the reason is that a system behavior associates
at most one state with an element of the set used for representing time. The
main idea explored in the current work is based on the same reasoning.

Note that it might seem inconvenient for some applications that the time
step width is fixed1. We discuss this question in Chap. 12.
1 This was pointed out by Dino Mandrioli in a personal communication.

3.3 The Main Idea: Use of Infinitesimals 21

We generally require that models be written so that they are correct
independently of the exact value of the step width used; the only allowed
assumption will be that the step width is smaller than (or equal to) some
design step width of the model.

While the approach to modelling the time domain using a scaled version
of N might look extraordinarily simple, this does not mean that all modelling
problems disappear. The only point we can hope for is that the formalism
chosen does not induce many extra complications, in addition to those present
in the application area modelled. Many problems which can appear using
classical models of quantitative time will reappear in some guise, for example
the problem of classical formalisms that a model might be too unrealistic
because it allows an infinite amount of activity in a finite interval of time.
In the formalism looked at here, such a model is not possible, since in any
finite interval of our model of time, there are only a finite number of steps
possible; but it might happen that the number of steps performing some work
is unlimited, which is a concept similar in some respects to the intuition of
infinity. Thus, the exact formalization of some problem might not apply to
our model, so that at first sight the problem of the classical approach seems
to be solved; but a (not necessarily very deep) analysis will typically show
that this is not the case; the problem reappears and has to be formalized in
some other way, but this can sometimes be done in a far simpler way (as an
example, see the redefinition of “receptivity” in Chap. 11).

So, what kind of simplifications can in general be expected from our new
model of time, if compared to a classical N-based or a classical interval-
sequence-based approach? We give some hints:

– Combination of independently developed models not complicated
by differing time scales. Since modellers can only specify an upper
bound for the allowed time step width for their models, independently
developed models can be combined by just choosing, as an upper bound
for the combination, the smaller one of the two.
But why can the same requirement for models not be used in a classical
approach using N as the time domain? Here, the requirement regarding
modelling a system independently from the step width used seems too
harsh.

– Case distinctions avoided in analyses of system runs. Using classical
interval sequences as the time domain, the modeller of a system typically
has to decide for each situation the system can be in if the next step is
an instantaneous discrete step or a time step, and, if the latter, of what
length the time step is. Because of this, some case distinctions are typically
necessary when a run of such a system is analyzed. If time proceeds as the
natural numbers do, simple induction will typically suffice.

– Combination of independently developed models not in need of
a complicated semantics. If independently developed systems are com-
bined, forming now subsystems of a larger system, during the computation

22 3. Models of Time and of System Behaviors

of a behavior of the larger system it must be determined which subsystem
wants to do the shortest step, and all systems must perform a step of such
a length; thus, formalizing and preparing systems for parallel composition
might become quite involved.
In systems driven by a global synchronous clock, which is an idea applicable
to systems using equidistant models of time, no such problems occur.

3.4 Summary

Some problems of classical approaches to model time discretely in a quantita-
tive way and some benefits of using a discrete model of time are mentioned.
We present interval sequences as the most advanced classical approach to
modelling time quantitatively for the description of hybrid systems, and we
discuss some drawbacks of this model. Finally, we give a short first exposi-
tion of the main idea of this work: time is discretized with an unspecified
but constant non-zero infinitesimal step width. This allows us to combine the
flexibility of the interval-sequence approach while avoiding its drawbacks, and
combines this with the merits of a discrete model of time.

4. Infinitesimals

Infinitesimals, i.e., numbers which are in some respect like zero and in some
other respect unlike zero, have been used in mathematics since the beginning
of the calculus. Robinson [Rob96] gives an overview of the use of infinitesi-
mals in the history of the calculus: Leibniz uses infinitely small numbers in
the development of the calculus without admitting their existence; he consid-
ers them to be useful fictions. De l’Hospital seemed to believe in the existence
of infinitesimals, and he formulated Leibniz’ principles in a way which made
the main inconsistency stand out – that infinitesimal quantities are some-
times treated as being equal to zero, and sometimes as being not equal to
zero. At the end of the 18th century, the inconsistency led to different ap-
proaches to avoid infinitesimals: Lagrange tries to base the calculus on Taylor
expansions, and D’Alembert uses the concept of limit, an idea already used by
Newton, and related to the Method of Exhaustion, attributed to Archimedes.
D’Alembert seems to have made the approach popular on the continent. At
the beginning of the 19th century Cauchy, the founder of modern analy-
sis, strangely enough reverts again to infinitesimals (in some sense, by using
variables “tending to zero”), e.g., in the definition of continuity where he
says that a function is continuous for some argument value if changing the
argument value infinitesimally, the function value also only changes infinitesi-
mally. Starting with Weierstrass’ approach to analysis, talking of infinitesimal
quantities was just considered a shorthand description for an ε-δ-definition
or argument. At the end of the 19th century, different approaches for deal-
ing with the infinite were developed. Cantor’s set theory was developed in
that time, as was du Bois-Reymond’s theory of orders of magnitudes. In the
20th century, Skolem represented infinitely large natural numbers by func-
tions tending to infinity; nevertheless, neither Cantor nor Fraenkel believed
in the possibility of basing analysis on infinitesimal quantities.

So basically, the properties of infinitesimals could not be made precise for
nearly 300 years and their use led to contradictions. In the 1950s, the logician
Abraham Robinson used model-theoretic means to develop a non-standard
model of analysis [Rob96]. The existence of non-standard models of arith-
metic had already been shown by Skolem in the 1930s [Sko34], and Robinson
built on Skolem’s ideas for the real numbers. Robinson’s approach was to
extend the field of real numbers in a similar way as the real numbers can

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_4,
© Springer-Verlag Berlin Heidelberg 2005

24 4. Infinitesimals

be constructed from the rational numbers by considering equivalence classes
of Cauchy series of rational numbers. Robinson used a logical apparatus in
order to determine which results of classical mathematics carries over to the
new model. Introductions to Robinson’s approach to infinitesimals and ap-
plications can for example be found in [LR94] and [ACH97].

Already Robinson hoped for some axiomatic approach to infinitesimals to
be found. Nelson [Nel77] developed such an approach, using ideas based on
those of Robinson to construct a consistency proof of his axioms relative to
Zermelo-Fraenkel set theory with the Choice axiom (ZFC). See [Rob88] for
another introduction to this theory. Nelson extends the ZFC-formalization of
mathematics by three more axioms (more precisely, axiom schemes), describ-
ing the properties of a new predicate for mathematical objects (which are all
sets in ZFC). This new predicate is called “standard”, abbreviated as “st”,
which can be likened to the intuitive concept “classical”. Thus, the mathe-
matical objects x for which st(x) holds are meant to represent the objects
intuitively known from classical mathematics, while the non-standard objects
are meant to represent new objects.

Nelson’s approach is a conservative extension of classical mathematics,
i.e., all classical theorems remain valid in the new axiomatization. This makes
Nelson’s approach so attractive in contrast to Robinson’s: The latter needs
quite some logical apparatus in order to determine which theorems can be
transferred to the newly constructed domain; Nelson’s approach is simpler
to use. Because of this, we base our approach on Nelson’s rather than on
Robinson’s theory.

Nelson’s three axioms are commonly called “idealization”, “standardiza-
tion”, and “transfer”, and his approach is often called “internal set theory”
(IST).

Note that we collected the notations used in the appendix.

4.1 The Axiom of Idealization

The axiom of idealization guarantees the existence of non-standard entities.
Let B(x, y) be a classical formula (i.e., it does not contain the predicate

“st”) with free variables x and y (and possibly other free variables). Then:

(∀st finz ∃x∀(y ∈ z)B(x, y)) ↔ (∃x∀sty B(x, y))

The x on the right hand side is the “ideal” object the existence of which is
asserted. This is typically a non-standard object.

Let B(x, y) ⇔def x, y ∈ R+∧x < y. Since for any finite set of positive real
numbers, there is a positive real number smaller than all of them (just take
half of the minimal element of the set), the axiom of idealization guarantees
the existence of positive real numbers strictly smaller than all standard pos-
itive real numbers. In a similar way, it can be proved that there are natural
numbers larger than all standard natural numbers. Another consequence of

4.2 The Axiom of Standardization 25

the axiom is that for a set X , every element of X is standard if and only if X
is a standard finite set, and by contraposition, that any infinite set contains
non-standard elements.

4.2 The Axiom of Standardization

What needs most adaptation from the side of the user of IST is that the new
predicate “st” and derived predicates are not necessarily set-forming. This
means that the standard elements of some set do not necessarily form a set.
For example, there is no set containing exactly the standard natural numbers,
and there is no set containing exactly the non-standard reals. The axiom of
standardization defines how subsets can nevertheless be formed using non-
classical predicates.

Let C(z) be a predicate (classical or not) containing the free variable z
(and possibly others). Then:

∀stx∃sty∀stz(z ∈ y ↔ z ∈ x ∧ C(z))

Since by transfer of set-extensionality, two standard sets are equal if they
have the same standard elements, the set y defined in the axiom is unique.
It is denoted as S{z ∈ x : C(z)}. The axiom says that any predicate can be
used to define a standard subset y of some standard set x, but that only the
standard elements of x are filtered by the predicate. A non-standard element
z of x might be in y without fulfilling C(z), and it might not be in y though
it fulfills C(z).

4.3 The Axiom of Transfer

The axiom of transfer is used to describe the idea that whatever holds for all
standard objects, holds for all objects.

Let A(x, t1, . . . , tk) be a classical formula with free variables x, t1, . . . , tk,
and no other free variables. Then:

∀stt1 . . .∀sttk(∀stxA(x, t1, . . . , tk) → ∀xA(x, t1, . . . , tk))

The axiom of transfer guarantees that all theorems of classical mathematics
remain valid if they are restricted to standard objects. The contraposition of
the transfer axiom can be used to show that any object uniquely defined in
classical mathematics is standard, e.g., the sets R and N0 and the numbers
0, 1 and π. This axiom also implies that standard sets are characterized by
their standard elements. This justifies to understand “standard” intuitively
as “classical”.

26 4. Infinitesimals

4.4 More Structure Discerned in Classical Objects

Nelson’s approach to non-standard mathematics leaves all of classical mathe-
matics (as based on ZFC) intact, i.e., the properties of N or of R

+
0 are exactly

those of classical mathematics: Classical induction is used for proving a clas-
sical property of every natural number, standard or non-standard. The new
predicate only allows us to discriminate more structure in these well-known
sets.

Of special importance for us is the additional structure given to R in the
new theory. Let us first define some basic concepts.

Definition 4.4.1. A number x ∈ R is infinitesimal if and only if ∀sty ∈
R

+ : |x| < y
A number x ∈ R is limited if and only if ∃sty ∈ R : |x| < y
A number x ∈ R is appreciable if and only if it is limited and not

infinitesimal.

Note that the only classical infinitesimal number is zero, but, via the
idealization axiom, it can be shown that non-zero infinitesimal numbers exist.
A limited number can be understood as being of the same “magnitude” as
classical numbers: unlimited numbers are those whose absolute value is larger
than that of all classical numbers; thus, they are very large indeed.

Simple consequences from these definitions are: Zero is the only standard
infinitesimal. Reciprocal values of non-zero infinitesimals are unlimited. The
product of an infinitesimal and an appreciable number is infinitesimal, and the
product of an appreciable and an unlimited number is an unlimited number.
The product of an infinitesimal and an unlimited number can be infinitesimal,
appreciable or unlimited, depending on the orders of magnitude of the two
numbers. Each standard real is limited.

We already stressed that the new predicate “st” is in general not set-
forming. This means that we can not use it to single out the standard elements
from the natural numbers or from the reals as a set, and we can not define
the set of infinitesimal reals, the set of limited reals or the set of appreciable
reals. Rather, for selecting elements from a set using a non-classical predicate,
we have to use the standardization axiom. The standard set containing the
standard elements of the reals which are infinitesimal is the singleton set
containing zero. The standard set containing the standard elements of the
reals which are limited is just the set of reals.

The concept “unlimited” might seem to be related to that of “infinite”,
but in fact, they are quite different. A set is finite if there is no injection
of it into a proper subset, or equivalently: if there is a bijection with a set
{i ∈ N0 | i < n} for some n ∈ N0. Thus, each set with exactly n ∈ N0 elements
is finite – also if n is unlimited. It follows that the properties of being finite
and of being limited have to be distinguished.

This also calls for a change of formalization of the intuitive concept of
effectivity. Classically, a function is considered to be effectively computable

4.4 More Structure Discerned in Classical Objects 27

if its value can be computed for each input argument in a finite number of
effective steps. Since the finite natural numbers also include unlimited ones,
this formalization might not be adequate in the non-standard framework.
The formal notion corresponding best to the intuition of effectivity is to
replace “finite” by “standard finite”, which is for natural numbers equivalent
to “limited”.

Let us be more specific. For a standard Turing machine with a standard
input, there exists a finite number n ∈ N0 so that after n steps, we can decide
if the Turing machine will ever halt: Just take an unlimited n. If the Turing
machine did not halt in the first n steps, it did not halt for any standard
number of steps, and since the Turing machine and its input are standard,
we can apply the transfer principle: If a standard Turing machine with a
standard input does not halt after any standard number of steps, it will not
halt at all. Thus, it can be decided in a finite number of steps if a standard
Turing machine with a standard input halts – but this can not be decided in
a limited number of steps.

Another important fact of IST is that each limited real number x is in
infinitesimal distance from some unique standard real number:

Proposition 4.4.1. Let x be a limited real number. Then there is a unique
standard real number, which we denote by ox, with x � ox.
ox is called the standard part or the shadow of x. Many theorems of non-
standard analysis are formulated in terms of the standard part of a limited
number. The operation of taking the standard part can be understood as an
abstraction operation on limited real numbers: using this abstraction means
ignoring infinitesimal distances between limited real numbers.

Note that o, as introduced above, is not a function, since its domain and
range are not sets. But for limited x, the standard set S{y ∈ R | y ≤ x} can be
formed by standardization, all elements are limited (all standard elements
are real numbers not greater than x, and, thus by transfer, all elements are
real numbers not greater than x), and, thus, has a supremum, which allows
us to define:

ox =def supS{y ∈ R | y ≤ x}
Since in the formalism of non-standard analysis, not all predicates are set-

forming, we can not use the term“set” for the collection of elements for which
some predicate is fulfilled. If some term is needed, we call such a collection
a “class”; for example, we can talk about the class of standard real numbers.
Sometimes, it is convenient to use predicate symbols from set-theory also with
a class C. In this case, this means the corresponding predicate; for example,
if C is the class of standard real numbers and C ′ is a class corresponding
to some other predicate, x ∈ C means that x is a standard real number,
and C → C′ means that being a standard real number implies fulfilling the
predicate of C′.

28 4. Infinitesimals

4.5 Real-Time Systems
with Constant Infinitesimal Steps

Let dt be a strictly positive infinitesimal, and let T =def dt ∗ N0 denote
the multiples of dt: This is the model of time in our approach to describing
real-time systems. dt will be called the step width of T. Obviously, this time
model consists basically just of the natural numbers; they are only scaled by
the infinitesimal dt.

The field R is Archimedean, i.e., for 0 < a < b, there is a natural number n
such that n∗a ≥ b. This also holds for infinitesimal a and non-infinitesimal b;
in that case, n must be unlimited. This means that a discrete system described
with our model must perform an unlimited natural number of steps until an
appreciable time has been spanned. Nevertheless, this number of steps is
finite: the smallest such n is � b

a�.
Such an unlimited number of steps can not be effectively performed step

by step; this is a major problem of our approach.
A nice property of our discrete model of time is that for each classical

predicate which is fulfilled for some element of T, there is a smallest such
element, i.e., a first moment at which the predicate is fulfilled. This is in
contrast to R

+
0 , where there is no first moment in time at which “now >

1” holds. For non-classical predicates, this existence of a smallest element
fulfilling the predicate is not guaranteed.

There are enough moments between any two standard reals for any stan-
dard number of discrete transitions to be modelled:

Theorem 4.5.1. Between any two standard non-negative reals, there is an
unlimited number of elements of T.

Proof. Let dt be the step width of T. Since dt is infinitesimal, also
√

dt is
infinitesimal, and n = �

√
dt

dt � is unlimited. Let x1, x2 be standard non-negative
reals with x1 < x2. With m = �x1

dt �, the set {(m + i) ∗ dt | 1 ≤ i ≤ n} is a
subset of T and all of its elements lie strictly between x1 and x2.

Corollary 4.5.1. T is dense in the standard non-negative reals.

T seems to solve several problems of the interval-sequence approach to
modelling hybrid systems:

– T is uniform.
– T is dense in the standard reals and allows any standard number of discrete

transitions between any two standard moments in real numbered time.
– T is discrete.
– Discrete transitions in T are absolutely ordered.

4.6 Summary 29

But it generates new problems:

– Simulation is non-trivial. Though time is discrete, and each point in time is
transgressed after a finite number of steps, the system can not be simulated
step by step, since for appreciable time spans, an unlimited number of steps
is necessary.

– The base formalism is too expressive. E.g., if we allow predicates“standard”
and“rational”in the definition of the step function, we could define a timed
system characterizing the standard rational points in time.

– While in a system description based on the time domain T, Zeno runs can
not occur, unlimited activity can take place, and it has to be avoided that
this artifact compromises the real-world validity of proofs. We will discuss
this at the end of Sect. 6.2.

4.6 Summary

This chapter gives a very short historical overview of the use of infinitesimals
in mathematics. We present Nelson’s approach of conservatively extending
ZFC, discussing the three axiom schemes proposed by him. Then we describe
that this theory allows us to discern additional structure in R, most impor-
tantly infinitesimal, limited/unlimited and appreciable numbers, and finally,
we describe some important properties of our model of time.

5. Operational Semantics of Discrete Systems

Different approaches exist for the description of discrete concurrent and reac-
tive systems. Often used examples are automata models (including hierarchi-
cal and parallel automata like Harel’s StateCharts [Har87]), formalisms for
the description of concurrent and reactive systems (including Lamport’s Tem-
poral Logic of Actions [Lam94a, Lam94b] or Manna and Pnueli’s Fair Transi-
tion Systems [MP92, MP95]), different versions of Petri nets [Rei86], or even
models used in theoretical computer science like Turing machines [Tur37].
We use abstract state machines (ASMs) [Gur88, Gur93, Gur95a, Gur97].
Abstract state machines are proposed as a formalism for operationally de-
scribing sequential discrete algorithms on any abstraction level [Gur99]. The
latter means that one intuitive step of the modelled algorithm corresponds
to one step of the formal algorithm. This is typically not possible in the
common models for effective computation used in theoretical computer sci-
ence like Turing machines or register machines, since in these models, inputs,
system state and output of the algorithms must be encoded with very basic
means, and the single steps which are allowed by these models are also of a
very simple kind. Thus, in these models, algorithms can only be encoded on
a quite low abstraction level. This means that these models are not adequate
for high-level modelling of algorithms. Abstract state machines are meant as
a remedy for this, as a model of computation which is both simple enough
to be attractive for being used in theoretical computer science, and powerful
enough to be used for modelling realistic systems and algorithms. In this way,
they are hoped to help bridge the gap between theoretical computer science
and more practice oriented branches of the discipline.

5.1 Action Systems

Abstract state machines are a specific formalism for the definition of action
systems. We first introduce the ideas behind this approach to the definition
of discrete systems.

We fix a set L of locations and a universe U, which is a set of values.

Definition 5.1.1. Werepresent states of a system as elements of A = L→U,
and the set of state changes, which we call actions and which we denote by
A , as partial functions from the locations to the universe. The partial function
with empty domain is called the vacuous action and is written υ.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_5,
© Springer-Verlag Berlin Heidelberg 2005

32 5. Operational Semantics of Discrete Systems

A system is defined by giving, for each state, the set of actions possible
in that state:

Definition 5.1.2. A (nondeterministic) action system is defined as a
function in A → P(A), i.e., a function which, for each state, defines a set of
actions which the system can perform in that state.

Consider an action system f . Note that we allow that f(q) might be empty.
This formalizes that the system f can not perform a step from state q. If
f(q) = {υ}, this formalizes that f can only perform the vacuous action in
state q, which represents a step which does not change anything.

A linear system behavior is defined by a start state and a sequence of
actions, which might be generated by an action system.

Definition 5.1.3. A start state q ∈ A and a sequence of actions a ∈ A

defines a sequence of states q ∈ A in which q(0) = q and q(i+1) = q(i)[a(i)]
for i ∈ doma. A run of an action system f : A → P(A) from some state q
is a sequence of actions a so that in the associated sequence of states q with
start state q, a(i) ∈ f(q(i)) for all i ∈ doma.

The concept of an action system is different from the more often used
transition system. A transition system is a subset of A × A describing the
possible state transitions of the system. The action system represents explic-
itly, for each state change in which some locations do not change their value,
if this is just because there was no update for the location performed, or
because the value written into the location was just identical to the value in
the location before the transition. This additional information is needed for
the definition of parallel composition.

An action system f defines, in a canonical way, an associated transition
system {(q, q′) ∈ A × A | ∃(a ∈ f(q)) : q′ = q[a]}. Similarly, it defines in
a canonical way an associated labeled transition system, i.e., a transition
system in which each transition is an element of A×A×A, by {(q, a, q′) | a ∈
f(q) ∧ q′ = q[a]}. When we talk about an action system and then about a
transition system or a labeled transition system, these are the mathematical
structures derived from the action system.

A state q′ is said to be reachable from a state q, or, equivalently, a state q
is said to reach a state q′ in a given transition system, if there is a sequence
of transitions in the system which leads from q finally to q′. Via the canonical
transition system, the concept of reachability can also be applied to action
systems.

Now we are prepared to describe the specific formalism we use for the
definition of action systems.

5.2 Abstract State Machines

Gurevich uses first-order structures to encode the state of an algorithm, which
includes inputs and outputs. This provides the flexibility to describe the state
with the level of detail which is necessary on the abstraction level for which

5.2 Abstract State Machines 33

one heads; this, at least, is a believe corroborated by a large number of case
studies [Bör98] and by a speculative argument in [Gur99]. Since ASMs are
primarily meant to replace less flexible models of effective computation, the
steps of ASMs should be effective. Gurevich uses rules to describe transitions.
We will interpret them as functions from states to action sets, i.e., as action
systems. The exact semantics will be given later.

Before we introduce the syntax of rules, we first present our notations for
first-order structures. S denotes the vocabulary and U the universe of values.
Each vocabulary element s ∈ S is interpreted as a function from Usa to U,
where sa denotes the fixed arity of s. Constants are represented as 0-ary
functions, predicates are represented as functions yielding Boolean values for
each argument tuple (the Boolean values tt and ff are assumed to belong to
U), and partial functions are represented by using an element ⊥∈ U as the
value of the function for argument tuples for which the function is meant to
be undefined. The set L of locations is the set {(s, t)|s ∈ S∧t ∈ Usa}, and the
set A of states is the set of functions L → U. Thus, a state q ∈ A defines, for
each s ∈ S, a function from Usa to U by fixing the value of (s, (u1, . . . , usa))
for each argument sa-tuple to the function which is represented by s.

When we say that two vocabularies are compatible, we mean that for
symbols occurring in both of them, the arity is the same.

ASMs describe dynamical systems by changes to the first-order struc-
tures. In ASMs, neither the vocabulary nor the universe is assumed to change
during a system behavior – only the interpretation of vocabulary elements
can change. The change at a single location is described by an update
(l, u) ∈ L × U which represents that the value of the location l is set to
the universe element u. An update (l, u) is called trivial in a state if the
current value of l in the state is already u. An ASM allows several locations
to change at once, which is semantically represented by an action, which is
a set of updates in which the location-components of the updates are all dif-
ferent. We denote the set of actions by A. ASMs also allow nondeterminism.
This is expressed by action sets, where each element action represents one
possible resolution of the nondeterminism in the step.

In the original definition of ASMs, syntactical elements are provided which
express the import of new elements from some infinite subset of the universe,
the “reserve”, which is unused, i.e., for which all functions but equality are
undefined. The reserve is used to model generation of new elements for an
algorithm. We will not use the special syntax, but we will use the assumption
that there is some way of generating new elements, for example when we
model processes or events by agents.

In the definition of some rules, also variables will be used. These are ele-
ments from a set V, disjoint from S (in order to be able to distinguish syntac-
tically 0-ary vocabulary symbols from variables). Variables are interpreted by
variable assignments V → U. The context in which rules with free variables
are interpreted consists of a function in (V ∪ L) → U, combining a variable

34 5. Operational Semantics of Discrete Systems

assignment and a state. We call such a function an extended state and will
denote individual extended states typically by p, q or decorated versions of
these letters.

5.2.1 Some Introductory Examples of ASM Rules

Intuitively, an ASM formalization of an algorithm consists in presenting a
rule which defines, for each state of the state space of the algorithm, which
alternatives exist for changes (i.e., in general ASM algorithms can be non-
deterministic); and each such change can consist of changes of values of any
number of locations.

The simplest rules are SKIP and HALT. An execution of the former changes
nothing, while an execution of the latter is not possible: it represents a dead-
lock of the algorithm.

Another very simple rule is the assignment, consisting of the description
of a location at the left hand side, and a term whose value is to be put into
the location at the right hand side. An example is the following ASM rule for
a modulo 1000 counter:

ctr := (ctr + 1) mod 1000

This looks just like an assignment statement in some programming language.
The semantics is only different from the programming language semantics
insofar as we typically assume that the ASM rule defining an algorithm is ex-
ecuted repeatedly; thus, the rule above defines an algorithm which increments
the value of ctr until it becomes 999, and then it starts at 0 again.

A counter which counts up to 1000 and stops then can be described with
a selection rule scheme and HALT:

IF ctr = 1000
THEN HALT
ELSE ctr := ctr + 1

We now present a rule which performs a sequential search for an element
x in an array A from the element at index startidx up to but not including
the element at index endidx. A flag found is set accordingly. A flag stop
is used to signal if the algorithm should stop; it is assumed to be initially
false.

IF stop
THEN HALT
ELIF startidx >= endidx
THEN || found := false

|| stop := true
ELIF A(startidx)=x
THEN || found := true

|| stop := true
ELSE startidx := startidx + 1

5.2 Abstract State Machines 35

Remember that repetition is implicit. The vertical bars denote a parallel
execution of subrules. In the example, this means that if the range to be
searched is empty, found is set to false and stop is set to true, and in the
case that the element looked for has been found, the flags found and stop
are both set to true.

In order to express the search algorithm conceptually as one step, we
might use an EXISTS-term:

found := (∃ i:(startidx <= i AND i < endidx AND A(i)=x))

These very simple examples are only meant to set the scene so that the
exact definitions of terms and rules which follow are more easily understood.
We will later present more involved examples.

5.2.2 Terms

Definition 5.2.1. Values are denoted by terms. Terms are interpreted in
extended states; they have the following forms and interpretations:

– Variable. A variable v ∈ V is a term. The value of v in the extended state
q is q(v).

– Selection term. For three terms t, t1 and t2, (t ? t1 : t2) is a term in state
q. If q(t) is Boolean, its value is (q(t) ? q(t1) : q(t2)), otherwise its value
is ⊥. We will also use the notation IF t THEN t1 ELSE t2, and we use
ELIF, as in programming languages, for abbreviating occurrences of other
selection terms in the ELSE branches of containing selection terms.

– LET term. For a variable symbol v and two terms t1 and t2, the value
of LET v = t1 IN t2 in the extended state q is q[v �→ q(t1)](t2), i.e., t2 is
evaluated in an extended state in which variable v has the value described by
t1 in q. We will also use a variant with values for several variables behind
the LET keyword.

– Symbol term. A 0-ary vocabulary element s ∈ S is a term. The value of
s in the extended state q is q((s, ())). If s is an n-ary vocabulary element
with n > 0 and t1, . . . , tn are terms, then s(t1, . . . , tn) is a term. Its value
in the extended state q is q((s, (q(t1), . . . , q(tn)))).
In both cases, s is called the head symbol of the term.

– EXISTS term and FORALL term. The expressions (∀x : t) and (∃x :
t), where x is a variable and t is a term evaluating to a boolean for all values
of x in the context of the expression, represent an infinite conjunction and
an infinite disjunction, respectively, with a component for each value of x.

An extended state is defined as a function only from locations and variables
to values, but as already seen in the definition of the meaning of s(t1, . . . , tn),
we will use it also as the induced function from terms to universe values.

Sometimes, we use a vertically aligned prefix notation and indentation for
avoiding parentheses for associative functions and their arguments, typically

36 5. Operational Semantics of Discrete Systems

for the Boolean functions AND and OR, which are often translated to ∧ and ∨.
E.g., the following notation denotes the term AND(t1,AND(t2,OR(t3,t4))):

∧ t1
∧ t2
∧ ∨ t3
∨ t4

Vertical alignment of partial terms at the same level and indentation makes
it clear how such a term is to be interpreted.

5.2.3 Rules

Transitions of ASMs are described by rules, which we interpret as functions
from extended states to action sets, i.e., as the functions ((V ∪ L) → U) →
P(A). For closed rules, i.e., rules without free variables, the variable assign-
ment part will be irrelevant. This is the type of rule we will typically consider.
Closed rules are also called programs. Rules with free variables will only oc-
cur in the definition of the semantics of other rules.

With a rule r, we associate two functions on extended states. [[r]]d is a
Boolean function which describes if the effect of r is defined in an extended
state q. The semantics [[r]] of r is an action system, i.e., it is a function
describing the possible effects of executing r in an extended state q in which
r is executable, i.e., it returns the set of actions from which one is understood
to be nondeterministically chosen. In an application, a rule may never be
applied in an extended state in which its effect is undefined.

We will have rule schemes allowing the synchronous composition of two
rules. In order to describe the consistency of two such rules, we need a function
describing the locations occurring in some action:

Definition 5.2.2. loc : A → L is the function yielding all locations occurring
in the updates of an action: loc(a) = {l ∈ L | ∃u ∈ U : (l, u) ∈ a}
Definition 5.2.3. We call a rule r enabled in some extended state q if the
action set [[r]](q) is not empty.

We now describe the rules, the conditions under which they are defined,
and their semantics:

Definition 5.2.4. Rule alternatives:

– Let r be SKIP. This is the do-nothing rule. It is always defined, and its
effect is to change nothing.

[[r]]d(q) = tt

[[r]](q) = {{}}

5.2 Abstract State Machines 37

– Let r be HALT. This rule can be used to signal an error condition, if executed.
It is always defined, and a computation stops if this is the only applicable
rule.

[[r]]d(q) = tt

[[r]](q) = {}
– Let r be s(t1, . . . , tsa) := t, where s ∈ S and t,t1,. . . ,tsa are terms over

the extended vocabulary S∪V. This represents an assignment, i.e., there is
just one action with just one update in which the location denoted by the
left-hand side gets the value denoted by the right-hand side. All terms are
evaluated in the current extended state.

[[r]]d(q) = tt

[[r]](q) = {{((s, (q(t1), . . . , q(tsa))), q(t))}}
– Let r be IF t THEN r1 ELSE r2, where the term t, the condition, evaluates

to a Boolean, and r1 and r2 are rules. This is the conditional rule, equiv-
alent to r1 if the condition evaluates to “true”, and equivalent to r2 if the
condition evaluates to “false”.

[[r]]d(q) = q(t) ∈ {tt,ff} ∧ (q(t) ? [[r1]]d(q) : [[r2]]d(q))

[[r]](q) = (q(t) ? [[r1]](q) : [[r2]](q))

The syntax IF t1 THEN r1 ELIF t2 THEN r2 . . . ELSE rn is interpreted as
expected.

– Let r be r1||r2, where r1 and r2 are both rules. This represents synchronous
execution of rules r1 and r2 and is allowed only in states in which the
locations possibly updated by r1 and r2 are disjoint. We call such a pair of
rules compatible in such states. Thus, we even disallow consistent parallel
updates, in contrast to Gurevich’s original definition.

[[r]]d(q) =
∧ [[r1]]d(q)
∧ [[r2]]d(q)
∧ ∀(a1 ∈ [[r1]](q), a2 ∈ [[r2]](q)) : loc(a1) ∩ loc(a2) = {}

[[r]](q) = {a1 ∪ a2 | a1 ∈ [[r1]](q) ∧ a2 ∈ [[r2]](q)}
– Let r be r1 OR r2, where r1 and r2 are both rules. This represents nonde-

terministic selection between the alternatives given by r1 and r2.

[[r]]d(q) = [[r1]]d(q) ∧ [[r2]]d(q)

[[r]](q) = [[r1]](q) ∪ [[r2]](q)

38 5. Operational Semantics of Discrete Systems

[[r]]d(q) =
∧ ∀(u ∈ U) : q[x �→ u](t) ∈ {tt,ff}
∧ ∀(u : q[x �→ u](t)) : [[r1]]d(q[x �→ u])
∧ ∀(u, u′ : q[x �→ u](t) ∧ q[x �→ u′](t)):

u �= u′ → loc(q[x �→ u]) ∩ loc(q[x �→ u′]) = {}

[[r]](q) = {⋃u:q[x �→u](t) au | au ∈ [[r1]](q[x �→ u])}
Note that a step of the FORALL-rule is not necessarily effective, even if for
each allowed value of the variable x which fulfills t, r1 is effective, since (1)
there might be an infinite number of values for x which make t true, or (2)
the set of values for x which fulfill t might be not effectively computable. In
Sect. 5.3, we will define a variant of this rule which avoids these problems.

– Let r be CHOOSE x : t IN r1, where x is a variable, t is a term evaluating
to a Boolean for all values of x, and r1 is a rule. This denotes the nonde-
terministic choice between the instances of r1 for values of x such that t is
true, and such that r1 is enabled for this value of x.

[[r]]d(q) =
∧ ∀(u ∈ U) : q[x �→ u](t) ∈ {tt,ff}
∧ ∀(u : q[x �→ u](t)) : [[r1]]d(q[x �→ u])

[[r]](q) =
⋃

u:q[x �→u](t) [[r1]](q[x �→ u])

Note that as for the FORALL-rule, the CHOOSE-rule is not necessarily
effective, even if for each allowed value of the variable x which fulfills t, r1 is
effective, since the set of values for x which fulfill t might be not effectively
computable. We will define a variant also of this rule which avoids these
problems.

In order to avoid some parentheses, we also use the following syntax to
denote that rules R1 to Rn are to be executed synchronously:

|| R1

|| ...
|| Rn

The || signs are aligned, so that if Ri spans several lines and all lines of Ri

are indented appropriately, it is clear where the next synchronous statement
begins.

Like for synchronous composition, we also use a syntax with vertically
aligned OR prefixes to denote that rules R1 to Rn are to be executed alterna-
tively:

OR R1

OR ...
OR Rn

5.3 Effectivity 39

We observe some relations between the rules:

Proposition 5.2.1. The following properties hold for the rules defined above:

– SKIP is a neutral element with respect to synchronous composition, and
HALT is a neutral element with respect to nondeterministic choice.

– The FORALL rule is a generalization of synchronous composition; if the
predicate term does not evaluate to tt for any value of the variable, then
the rule is equivalent to SKIP.

– The CHOOSE rule is a generalization of nondeterministic choice; if the pred-
icate term does not evaluate to tt for any value of the variable, then the
rule is equivalent to HALT.

– The OR combinator and the || combinator are both associative and com-
mutative.

There are two idioms which might be plausible interpretations of the
partial IF statement “IF t THEN r”. One is r1 =IF t THEN r ELSE SKIP,
the other is r2 =IF t THEN r ELSE HALT. r1 is sensible if the main way of
combining rules is by synchronous composition, r2 would be sensible if the
main way of combining rules is by nondeterministic choice. We will avoid the
abbreviation.

An ASM is formally defined like this:

Definition 5.2.5. An ASM is a universe, a vocabulary of symbols, und a
rule in which the symbols are used with the correct arities.

If the universe is implied, a rule alone can define an ASM, by choosing the
symbols occurring in the rule as the symbols of the ASM.

5.3 Effectivity

Gurevich’s basic definition of sequential ASMs [Gur99] does not include HALT,
the nondeterministic rules and the FORALL rule. We allow them here, but
we note that for the CHOOSE rule and for the FORALL rule, our definition
in this generality deviates from the goal of describing just effective steps,
since in order to determine for which values of the variable the predicate
is true, typically an infinite amount of work is necessary (all values in U

have to be checked for the variable), and an infinite number of locations
might be changed in a FORALL step. Gurevich proves that his set of rules and
rule schemes (which Börger calls ‘basic ASMs’ [BS03]) suffices to describe
sequential algorithms (by assuming some plausible formalization for“bounded
work”).

We will use a special notation which combines the convenience of the no-
tation of FORALL and CHOOSE rules with effectiveness. We assume that the
vocabulary S contains a subset of unary predicate symbols F which are inter-
preted as finite sets which are given in an effective manner (those elements
u ∈ U are assumed to belong to the set described by F ∈ F in an extended
state q for which q((F, (u))) = tt). We call the interpretations of elements

40 5. Operational Semantics of Discrete Systems

of F effective sets. To be specific, assume that for an effective set, there
is an enumeration procedure of the elements of the set which signals when
it has enumerated all elements of the set. With this convention, we use the
following additional forms of rules and terms:

Definition 5.3.1. (Effective variants of rules)

– Effective FORALL-rule. Let r be FORALL (x : F) : t DO r1, where x is
a variable, F ∈ F is a symbol of an effective sub-universe of U, t is a term
evaluating to a Boolean for all values of x so that F (x) is true, and r1 is a
rule. The semantics is basically that of FORALL x : F (x) ∧ t DO r1, there
is only one conjunct added to [[r]]d, which is that F denotes a finite effective
set. If t is true, the rule may be abbreviated as FORALL (x : F) DO r1.

– Effective CHOOSE-rule. Let r be CHOOSE (x : F) : t IN r1, where x is
a variable, F ∈ F is a symbol of a finite effective sub-universe of U, t is a
term evaluating to a Boolean for all values of x so that F (x) is true, and
r1 is a rule. The semantics is, similar to the previous case, basically that
of CHOOSE x : F (x) ∧ t IN r1, and again there is only the conjunct added
to [[r]]d that F denotes a finite effective set. If t is true, the rule may be
abbreviated as CHOOSE (x : F) IN r1.

– We extend the (Boolean) terms by two effectively computable expressions
(∀(x : F) : t) and (∃(x : F) : t), in both of which x is a variable, F ∈ F,
and t evaluates to a Boolean for all values of x such that F (x) is true.
We interpret these two expression in extended states in the standard way:
The ∀ term is true if t evaluates to true for all values of x so that F (x)
evaluates to true, and the ∃ term is true if t evaluates to true for at least
one value of x so that F (x) evaluates to true.

If an ASM rule does not contain occurrences of rules with unrestricted quan-
tification, each step described by it is effective whenever the application of
the program is defined in a state.

Note that the application of a rule to some state is only well-defined if
the symbols are used in the rule with the same arity as in the state, and if
the classification of the symbols is respected, e.g., if static symbols are not
updated by the rule (classification of symbols is described in Sect. 5.4). It is
simple to check if this is the case; in the sequel, we will silently assume that
these consistency criteria are fulfilled. For a given rule R, we will talk about
a state q for R, or a state q compatible with R in order to make explicit
that q contains the necessary symbols with the proper arities and, possibly,
further restrictions allowing the application of R.

5.4 Classes of Symbols

In order to make some coding conventions explicit and to describe some
systems more concisely, the function symbols of an ASM are classified into
several classes; we assume that these properties of symbols are also recorded

5.4 Classes of Symbols 41

in the vocabulary, and that for two compatible vocabularies, the properties
are the same for symbols occurring in both.

– Symbols can be classified as static. These denote functions whose locations
are not intended to be updated during a run. The latter makes it possible
to use a static symbol slightly incorrectly to denote also its interpretation.
There are other plausible reasons for defining a symbol as static in an ASM.
One is that its interpretation must not change, which would allow trivial
updates to locations of the symbol. Another is to call all symbols static
which do not change their value (or are not updated) in any run of a given
system, i.e., to define the concept semantically. We choose to call a symbol
static if it is denoted by the designer as such, which allows design errors to
be detected.

– Symbols can be classified as dynamic. These are symbols which may oc-
cur as the head of terms on the left-hand side of assignments, and they
represent dynamically changing components of the modelled system.

– Finally, symbols can be classified as derived. Derived symbols are inter-
preted as functions whose values can be computed from the static and
dynamic functions in the system. Thus, their interpretations do not need
to be represented explicitly in the system – they can be derived from the
state.
The meaning of a derived n-ary symbol s is defined by a term t with at most
n free variables, where each argument position i ∈ {1, . . . , n} is associated
with a variable symbol vi.
When the value of a term function s(t1, . . . , tn) with a derived n-ary symbol
s is to be determined, the values of the ti are determined and an extended
state is used for the evaluation of t which maps each vi to the value of ti.
We define syntactically a directed dependency graph between derived sym-
bols by saying that there is an edge between s and s′ if s′ �= s and s′ occurs
in the defining term of s. We require that there are no infinite paths in this
graph, which excludes indirect recursion.
Direct recursion is allowed, but only if it is well-defined. We require that
when s(t1, . . . , tn) is a direct recursive occurrence in the definition of the
value s(v1, . . . , vn) (where v1, . . . , vn denotes the variables used as formal
parameters in the definition of the derived symbol s), there is a well-ordered
domain O and a function f : Un → O so that ∀v1,...,vn(P → f(t1, . . . , tn) <
f(v1, . . . , vn)) is a tautology, where P expresses the conditions for the re-
cursive invocation (we stole this approach to ensuring well-definedness of
function declarations from the proof support system PVS [ORSvH95]).
Derived symbols can not be written to, but they change their value when
a dynamic symbol occurring directly or indirectly in the defining term of
the symbol changes its value. The definition of the semantics of rules only
encodes the effects of updates on dynamic symbols. The change of the
meaning of a derived symbol is implicit.

42 5. Operational Semantics of Discrete Systems

We will generally assume that together with a vocabulary, the definitions
of all derived symbols of the vocabulary are given. And we assume that
when we say that two vocabularies are compatible, we assume that the
definitions of derived symbols occurring in both are identical.

5.5 Interaction with the Environment

In order to model open systems, i.e., systems interacting with an environ-
ment, or in order to express features which can not be well described in an
operational way, Gurevich proposes to fix a subset of the locations which are
to be used as inputs from the environment. The behavior of the environment
is not necessarily described as a rule, i.e., operationally; rather, any mathe-
matical concept may be used to restrict the behavior of the environment –
typically, the admissible environments will be described in some declarative
way.

Somehow it must be ensured that such locations are not written to concur-
rently by the system described operationally and its environment, since any
semantic resolution of such a form of access would be ad hoc. Gurevich pro-
poses in [Gur95a] that the system and the environment take turns in changing
the state. Another approach would be to simply disallow write access of the
operational system to the locations written to by the environment. In this
work, I propose that the environment and the system operate synchronously
(in order not to introduce a new concept), but that both obey some protocol
so that they do not write to the same location in the same step. Gurevich’s
proposal is a special case of this approach where the protocol would say that
in each even step, the system may take a turn and change any location, while
in each odd step, the environment may take a turn. The read-only proposal
also is a special case of our approach. Additionally, our approach lends itself
nicely to further refinement, i.e., if part of the declaratively described envi-
ronment task should be re-described in an operational way as a rule, this
rule can then just be combined with the system rule with the synchronous
combinator, and the access protocol used by the environment rule and the
system rule have to ensure that the compatibility condition holds for the two
rules.

The drawback of our approach is that there is no default write access
protocol for the interaction of system and environment; thus, we have to
describe this protocol explicitly, operationally for the system component, and
typically declaratively for the environment, when open systems are described.

5.6 Gurevich’s Thesis

As already mentioned, variants of ASMs are proposed as a formalism for
describing algorithms on any abstraction level. Gurevich claims specifically
that each sequential algorithm can be mimicked step-by-step by an ASM. This

5.6 Gurevich’s Thesis 43

is a sharpened version of the Church-Turing thesis that, e.g., Turing machines
are a universal model to express any computable function. Gurevich’s thesis
relates, like the Church-Turing thesis, an informal concept (that of sequential
algorithm) and a formal concept (the ASM). Because of the informal element,
the thesis can not be proved in the mathematical sense, but one can strive for
speculative arguments by trying to make the intuition behind the informal
concept precise, and one can try to collect empirical evidence for the thesis.

One formulation of the thesis which one sometimes find for this is that an
intuitive algorithm can be described as an ASM basically without coding. In
order to avoid misunderstandings, we want to describe shortly in which sense
we accept this claim and in which sense the claim might be misunderstood
so that it would be false.

The claim that not much coding is used when an algorithm is described as
an ASM is plausible if an ASM description is compared to a Turing machine
description or a register machine description. This is because the possible con-
figurations of algorithms can nicely be modelled as first-order structures, and
algorithms doing finite work in each step can nicely be modelled by an ASM
program. In order to use a Turing machine for solving a problem algorithmi-
cally, one has to encode the inputs, outputs and states of the algorithm as
tape configurations and states of the finite control component. In comparison
to this and other common models of effective computation used in theoret-
ical computer science, intuitive ideas can be expressed more directly in the
formalism of ASMs, because the data types and step operations allowed by
ASMs are very flexible.

5.6.1 Elements of Programming Languages

But there are also features of algorithms which are implicit in some descrip-
tions and must be made explicit when abstract state machines are used. Ex-
amples are features of common programming languages, like the control state,
which is implicit, for example, in while-languages; or recursion; or different
visibility ranges of variables, etc. ASM rules provide only very basic means
to describe algorithms, e.g., for control structures. More complicated features
of common programming language must be encoded. Let us investigate two
of these features a bit more:

– Non-determinism is explicit by systems described by ASM. Only openness
(which might allow a non-deterministic environment) or an occurrence of
a CHOOSE or OR rule can make a system non-deterministic. Thus, implicit
non-determinism of other formalisms must somehow be coded explicitly
when an ASM model of the system is described.

– All state-components of the system must represented explicitly, i.e., must
be assigned to some locations. Typical state elements which are implicit in
other formalisms are the control state (which is one or a set of positions in
a program text), and elements like timers in real-time languages which are

44 5. Operational Semantics of Discrete Systems

used to determine minimal and maximal waiting times. Note that it is very
convenient not to be forced to think about a name for each configuration
a system might be in – but in order to reason about the dynamic system
behavior, one typically has to introduce some naming scheme for the control
locations or sets of control locations of a program described with implicit
control flow (see [MP92] for an example).

5.6.2 Operationality

Another type of restriction of the ASM model is that ASMs describe systems
operationally rather than declaratively. This is, for example, in contrast to
temporal logic with which a system can be described at a higher abstrac-
tion level. For example, a system might be described by requiring that every
possible run fulfill the formula �(x = 0 → �x = 1) of linear temporal
logic (meaning that every state in which x = 0 holds is followed by some
state in which x = 1 holds). This kind of declarative system characteriza-
tion is at a too high level of abstraction for ASMs, since ASMs can relate
only states of system behaviors in which one state is the direct follower of
the other. Tableau-based approaches exist for encoding the semantics of a
formula of some temporal logic by a characteristic automaton, i.e., somehow
operationally, but this expression of temporal formula as automata is exactly
the kind of low-level encoding which is to be avoided if systems are to be
described at their natural abstraction level.

Note that this observation does not contradict Gurevich’s claim. Algo-
rithms are supposed to perform their task step by step, i.e., operationally.
From the claim that a formalism is expressive enough for modelling algo-
rithms on any abstraction level, it does not follow that it must be expressive
enough to model also declarative specifications of properties of algorithms
concept-by-concept. Note that the original ASM approach allows some“cheat-
ing” by (1) modelling the system as an open system, (2) assigning a subtask
which is not easily described operationally to the environment, and (3) spec-
ifying the environment declaratively.

5.6.3 No Complications Induced by Formalism

Sometimes, a formalism is proposed for some application area with the claim
that it does not induce complications in excess of those inherently contained
in the application area. The hope in such a case is that the factual problems
of the application area can be isolated and do not mix with technicalities
which just arise from the use of a given formalism. For de Roever [dR98], one
condition for this claim to hold is that the formalism is compositional, i.e.,
that a complicated analysis of a system or a problem can be performed by
doing a number of simple analyses and putting the results together. Lamport
[Lam97] argues in this respect for the use of all of mathematics, instead of
the use of some artificially restricted sub-language.

5.7 Comparison to Other Formalisms for Discrete Systems 45

But for restricted application areas, restricted formalisms might be appro-
priate, if the restrictions are more seen as a form of guidance for the modeller
than as a strict prohibition to use any concept not already contained in the
formalism. Also ASMs are in many applications used not so much as a strictly
defined model, but as a framework providing some inspiration. For example,
Gurevich [Gur99] leaves explicitly open the question as to in which way the
set of admissible states and of initial states is defined. For the specification
of sequential algorithms, ASMs are a formal model which does not require
the software engineer to specify more structure than is strictly necessary on
the abstraction level chosen, i.e., it is claimed that with respect to step-wise
execution of an algorithm, the ASM formalism does not induce any excess
complications. As already mentioned, for features of algorithms which can
not be expressed directly in the operational ASM formalism, Gurevich pro-
poses to let the environment solve the partial task, where the properties of
the environment may be specified using any idea from all of mathematics, or
more specifically: also declarative specifications are admitted in the descrip-
tion of the environment. In this way, the inherent restriction to operationality
in ASMs is partly suspended.

As discussed in Sect. 2.6, a very generally usable formalism will not give
much guidance to the software engineer: If a formalism can express all intu-
itive ideas likewise concisely and directly, then this holds a fortiori for silly
ideas. In an extreme way this also holds for “all of mathematics”, which Lam-
port proposes to use. Thus, it is helpful for a general formalism to describe
at least conventions and idioms which have proved helpful for specific ap-
plication areas. This is also true for ASMs. For example, a convention has
been developed for defining the operational semantics of programming lan-
guages, e.g., using a constant representation of the parsed syntax tree of the
program in the (memory) state as guidance for mimicking the control flow of
the program.

5.7 Comparison to Other Formalisms
for Discrete Systems

To highlight the reasons for choosing ASMs as the basic discrete formalism
on which we base our approach to modelling real-time systems, we describe
some features which distinguish it from other possible choices:

5.7.1 Updates vs. Transitions

We use a formalism based on updates rather than one based on
transitions because transition based semantics are not composi-
tional for the operator expressing synchronous execution of several
steps.

46 5. Operational Semantics of Discrete Systems

Several popular base formalisms for the description of discrete systems
are based on transitions, i.e., a possible step of the system is described by a
binary relation on states, or equivalently by a function from states to state
sets. Examples are Lamport’s Temporal Logic of Actions (TLA, [Lam94b])
and Manna and Pnueli’s Fair Transition Systems (FTS, [MP92]). These for-
malisms are designed for expressing concurrency which is based on inter-
leaving and they allow the expression of fairness constraints (see Chap. 8).
ASMs do not provide fairness concepts in the basic semantics, but there is
no problem with defining them in the ASM context.

We use ASMs rather than transition systems since we need an operator
for synchronous composition, and we want to be able to “close” a system. We
want to express the following: “If no synchronously running process changes
the value of location �, it keeps it value (by default), but it is allowed that a
synchronously running process changes its value.” This is the normal seman-
tics of an assignment in a programming language with respect to locations
which are not assigned to in the assignment. The transition system semantics
can not express this: Transition-based approaches do not allow us to distin-
guish between quantities which keep their value in a step by default and
quantities which keep their value because of a trivial but explicit assignment.

This means that transitions are too abstract a concept to express syn-
chronous composition of assignments. A semantics of a formal language, i.e.,
a function relating a meaning to each phrase of the language, is called com-
positional if it represents enough information from the syntax in order to
define the meaning of composition operators only via the meanings of the
components [Mos90]. In this sense, a transition semantics of a discrete sys-
tem is non-compositional for the synchronous composition of assignments,
since it is too abstract. An update semantics, i.e., a semantics which de-
scribes the meaning of a step just by its effect on those locations which are
explicitly set to some value, contains the necessary details.

5.7.2 State Based vs. Event Based Systems

We use a formalism representing states explicitly rather one rep-
resenting events explicitly.

There is probably no very deep reason for this decision. We just feel more
comfortable with states than with events as the basic concept for describing
system behaviors, but this is probably by chance.

Process algebras (like CSP or CCS [Hoa85, Mil89]) describe discrete sys-
tems in a way making the events of the system explicit and defining the states
of a system implicitly via the possible event sequences of a system. In the
state based approach, events are described as classes of state pairs.

One reason for using a state-based approach is the fact that one can use
many concepts from formal logics to characterize both states and events in a
quite direct way.

5.7 Comparison to Other Formalisms for Discrete Systems 47

We can model event based systems as ASMs quite directly by writing an
operational interpreter for process algebra terms, e.g., by representing explic-
itly each active agent, and by representing for each agent the set of events it
offers, and by modelling the interleaving of agents and the nondeterministic
selection of an event of the selected agent by explicit CHOOSE rules.

Bolognesi and Börger [BB03] describe an approach combining features
from ASMs and from process algebras. They define an extension of ASMs in
which both the concept of an evolving process description and the concept of
an evolving state is used. Börger1 points out that process algebra events can,
in the ASM context, just be interpreted as special cases of update sets; in this
way, the conflict between state-based and event-based approaches to system
description can be resolved by a special interpretation of some features of
ASMs.

5.7.3 Structured vs. Unstructured States

We use structured representations of states rather than unstruc-
tured in order to be able to express each global configuration of
the modelled system at any abstraction level.

States of finite automata typically described in books on automata theory
have no internal structure [HU79]. This is adequate if the automata are looked
at a very high level of abstraction. If more details of situations are to be
represented explicitly, more structure is needed.

The several decades of experience with first-order structures makes the
assumption plausible that the global state of a dynamical system at any fixed
moment can on any abstraction level be described by such a structure. Thus,
the level of detail to be represented of a situation can probably be tuned
exactly to one’s wishes if first-order structures are used.

5.7.4 Explicit vs. Implicit Nondeterminism

We use a formalism in which nondeterminism is typically made ex-
plicit in order to distinguish potentially nondeterministic systems
and necessarily deterministic systems syntactically.

In ASMs, nondeterminism can only be introduced by special syntax, or by
environment assumptions. Both forms of the introduction of nondeterminism
make it fairly explicit, and since nondeterminism seems to be a complicated
concept to deal with and not necessary for many applications, it is nice to
be able to define easily a fragment of the notation where the steps are all
deterministic.

This is in contrast to constraint based or logical formalisms where deter-
minism must typically be defined semantically.

1 Personal communication.

48 5. Operational Semantics of Discrete Systems

5.7.5 Operationality vs. Declarativity

We use an operational formalism in order to make it easy to de-
scribe effective and non-contradictive systems.

ASMs are designed for making it easy to describe systems operationally:
declarative components of a system description are not treated explicitly,
i.e., ASMs do not provide specific notation and semantics for defining system
properties declaratively. While ASMs do not exclude declarative components
of system descriptions, they are refined for operational descriptions of algo-
rithms, i.e., of systems which proceed step by step, each step being effective,
and where some effort is made to make it clear that a system description
is non-contradictive. In more declarative formalisms, less stress is laid on
effectivity and the avoidance of contradictions.

It is reported that also non-experts in mathematics or theoretical com-
puter science feel comfortable with the formalism. We believe that this has
to do with the fact that the operational base idea of ASMs, i.e., to describe
dynamical systems by (effectively) guarded assignments and to combine such
systems by synchronous execution and non-deterministic choice, is simple to
understand.

5.8 Summary

This chapter details the reasons for using a variant of ASMs as the base
formalism for our approach. We introduce the concept of “action system” as
a semantical basis for ASMs. Our introduction of ASM term and ASM rule
syntax is rather standard; semantically, we use a variant from the standard
by disallowing concurrent updates of a location in a step if they update to
the same value, and by interpreting a CHOOSE rule with a false range for
the variable as deadlock. Environment interaction in our variant of ASMs
is defined so abstractly that refinement is made easy, but synchronisation
has to be made explicit. In the discussion of Gurevich’s thesis, we deal with
possible misunderstandings which the claim to coding-freedom of expressions
of algorithms as ASMs might induce. Finally, the basic ideas used in ASMs
are compared to decisions taken in other formalisms, and, where possible,
reasons are given why we follow the ASM approach.

6. Defining Hybrid Systems with ASMs

We will define hybrid systems using the most important ideas from ASMs.
First we define a classical approach to modelling hybrid systems, and then
we define a novel, non-standard approach of modelling hybrid systems.

6.1 ASMs for the Definition of Classical Hybrid Systems

6.1.1 Standard Time ASM Rules and Hybrid Transition Systems

In order to be able to compare the approach based on infinitesimals to a clas-
sical approach, we first develop a method for describing algorithms needing
a quantitative model time with ASMs in a classical way. We use the interval
sequence approach to model time in this classical approach to model hybrid
systems.

ASMs are basically proposed as a formalism for the description of dis-
crete systems. There are different approaches extending the use of ASMs to
the description of systems containing also continuously changing quantities.
Examples are given in [GM95, GH96, BS97b, BS97a]. In these approaches,
the continuously changing quantity is the time. The timing of the rule, which
describes the discrete changes, is defined independently from the rule. Our
approach is different: here, the rule also defines the timing of discrete changes.

While the investigation of the use of ASMs for the definition of hybrid
systems defined with an interval sequence time model is not the main focus
of this work, it will provide some insights into a problem of using a dense
model of time and a reference formalism for classical hybrid systems. We use
the following definition:

Definition 6.1.1. A standard time ASM rule (STASM rule) is a rule in
which the nullary symbol now is treated as a static symbol.

We consider an STASM rule R as defining discrete and continuous transitions.
We do this analogously as for normal ASMs, by understanding R as a function
from states to actions; the only special point is the handling of updates to
now. We denote this function, the hybrid semantics of an STASM rule R,
as [[R]]h. The discrete transitions are those of standard ASMs, we just make
explicit that the value of now does not change. Continuous transitions are

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_6,
© Springer-Verlag Berlin Heidelberg 2005

50 6. Defining Hybrid Systems with ASMs

those in which time is spent, represented by changes of now. A rule allows
time to be spent as long as it admits the vacuous action υ, which has thus a
special role in our approach.

Definition 6.1.2. The hybrid semantics [[R]]h of an STASM rule R is an
action system, i.e., a function of A → P(A), defined as

[[R]]h(q) =

⎛
⎜⎜⎜⎜⎝

{a[now �→ q(now)] | υ �= a ∈ [[R]](q)}
∪
{{now �→ q(now) + l} |

l ∈ R+ : ∀(l′ : 0 ≤ l′ < l)
υ ∈ [[R]](q[now �→ q(now) + l′])}

⎞
⎟⎟⎟⎟⎠

[[R]] and [[R]]h differ only with respect to updates of now. Since in R, now is
not updated, there occur no updates of now in actions of [[R]](q), which means
that the updates we add can not lead to inconsistencies. In [[R]]h, we make
explicit that in discrete steps, now does not change its value, and that there
are additional time actions in which only now changes its value. These time
steps can be as long as [[R]] admits the vacuous action; they may lead into
states in which [[R]] does not admit the vacuous action.

Note that we never allow zero-time time transitions, since l must be
strictly positive. Note also that a discrete transition is assumed to take no
time, since now can not be changed during a discrete transition. Note also
that the only dynamical symbol of the vocabulary which changes during a
time transition is now. This means that other continuously changing quan-
tities must be modelled differently. For this, derived symbols involving the
symbol now directly or indirectly will be used. We will call now and the de-
rived symbols using now directly or indirectly in their definition continuous
symbols, since their values are the only ones which can change in the course
of a time transition.

The time transitions fulfill some conditions sometimes required from time
transitions of hybrid systems [LSVW96]:

Proposition 6.1.1. (1) A transition system defined by an STASM rule R is
forward and backward time deterministic, i.e., if p reaches q and q′ by time
transitions of the same length, then q = q′, and if p and p′ both reach q by
time transitions of the same length, then p = p′.

(2) The time transitions defined by an STASM rule R are closed under
concatenation, i.e., if p0 reaches p1 by a time transition and p1 reaches p2 by
a time transition, then p0 reaches p2 by a time transition.

Both facts follow directly from the definition.
An STASM rule R and an associated vocabulary S define a set of interval

sequences in the obvious way. In the start state, now has the value 0. To points
in time x between the end points of a continuous transition, we assign the
state q[now �→ x]. True system activity is only assumed to take place during
discrete transitions.

6.1 ASMs for the Definition of Classical Hybrid Systems 51

In order to illustrate the idea, we describe some simple examples:

– A saw-tooth function increasing like time and jumping from 1 back to 0
as soon as 1 is reached can be modelled by a derived nullary function t
and a dynamic nullary function s encoding the time of the last reset. t is
defined by t =def now − s. The rule defining the transitions is “IF t = 1
THEN s:=now ELSE SKIP”, and the system starts with s = 0.

– We can express more complicated hybrid systems by using more compli-
cated static functions of the reals which are applied to some term involving
now. As a simple example, the sine function of time can just be defined via a
derived nullary function symbol s and a static unary function sine, where
the term defining the value of s in each state is sine(now). With these def-
initions, the following rule increments a counter each time the sine function
reaches its maximum 1:

IF s=1 ∧ lastcounttime �= now
THEN || count := count + 1

|| lastcounttime := now
ELSE SKIP

The partial condition involving lastcounttime (which is assumed to be
initialized with the undefined value at system start) is necessary because of
the time model in which time does not increase in discrete steps; since with
the incrementation of count, the time does not change, the incrementation
would have to be performed infinitely often if it would not be blocked from
execution by the additional condition which ensures that for each value of
now, it is performed at most once. We discuss this variant in Sect. 6.1.2.

– PCD systems can be defined by an STASM rule and associated derived
symbols in which each derived continuous symbol s is defined by a term
which is linear in now for all direct and indirect occurrences of now in the
term.

Note that we did not restrict the static functions of the reals usable in the
definition of derived symbols. This means that we can model quite general
hybrid systems by STASM rules and associated definitions of derived symbols.

6.1.2 Infinite Activity

Above, we described a rule which counts the maxima of the sine function.
The similarly looking rule IF s=1 THEN count:=count+1 ELSE SKIP, which
might look like a counter for moments at which s equals 1, leads to a system
which up to time 1 can only let time pass and then, time can not increase any
longer, since discrete actions take no time in our model, which means that
after s has become equal to 1 for the first time, the discrete incrementation
step is performed again and again, and time can not flow on. This is a variant
of infinite activity, since there is a finite span of time, specifically: each finite
interval containing time 1, in which this system shows an infinite amount of

52 6. Defining Hybrid Systems with ASMs

activity. This problem can occur in models in which discrete steps take no
time and in which steps might be urgent, i.e., in which discrete steps might
imply that they be taken before any time passes.

6.1.3 Hesitation and Urgency

There is another difficulty of our formalization, which is specific to dense
models of time. As an illustration, consider the rule “IF x=0 ∧ now>1 THEN
x:=x+1 ELSE SKIP”. Starting at time 0 with x=0, when will the update
“x:=x+1” take place? At time 1, it is too early; the condition is not fulfilled.
And at any real (or rational) time larger than 1, it is too late, since by dense-
ness of the model of time, there was an earlier time at which the condition
was fulfilled, and when it thus should have been taken. The consequence is
that in a state with time 1, the rule admits neither a time step nor a discrete
step, which means that the rule is equivalent to HALT in such a state; but it
is a fairly implicit HALT.

This is one of the artifacts of the given approach to the description of
hybrid systems. In a discrete model of time which is isomorphic to N0, each
non-empty subset of the moments has a smallest element, which implies that
for each standard predicate of time, there is a specific first moment at which
the predicate becomes true. For dense models, this is not the case, which
means that we can get in trouble if the condition of an action characterizes
a set of times without a first element, and the semantics requires that some
action be performed as early as possible.

We characterize the problem in the following way:

Definition 6.1.3. Let R be an STASM rule and q be a state for R in which
q(now) is a real number. We say that R hesitates in q if and only if [[R]](q) =
{υ} and ∃(x ∈ R : x > q(now))∀(y ∈ R : q(now) < y < x) : υ �∈ [[R]](q[now �→
y]) �= {}.
The first condition ensures that R can only let time pass in q. The second
condition ensures that R must do a discrete step before any non-zero time
has been spent, which implies:

Proposition 6.1.2. If an STASM rule R hesitates in q, then [[R]]h can do
only zero-time steps.

The condition υ �∈ [[R]](q) �= {} is called urgency of R in q. It expresses
that from q, no time may pass before R does a discrete step.

6.2 ASMs with Infinitesimal Step Width

The approach of using a constant infinitesimal step width for the descrip-
tion of real-time systems based on a discrete formalism can be used in the
ASM framework very easily by requiring that there is a static nullary sym-

6.2 ASMs with Infinitesimal Step Width 53

bol dt interpreted as a strictly positive infinitesimal, that there is a dynamic
nullary symbol now initialized to 0, and that the rule now:=now+dt is exe-
cuted synchronously with each step of the system. We admit more generality
and require that there is a time rule Rtime which is executed synchronously
with the system rule and which increments now by dt in every step, but which
might also do some more timing-related work. A time-only step of the system
is then one which can be explained by Rtime alone, and all other steps are
discrete steps of the system.

In order to reason about ASMs with infinitesimal step width, it is helpful
to restrict the occurrence of non-standard objects in the ASM state space. In
order to do this, we will introduce yet another distinction between symbols:
There are symbols which are always interpreted as standard objects, and there
are symbols which may also be interpreted as non-standard objects. We will
simply call the first kind of symbol standard symbol, and the other non-
standard symbol, even though the interpretation of a non-standard symbol
may also be a standard object.

Definition 6.2.1. An interpretation of a set of symbols is standardly cor-
rect if standard symbols are interpreted as standard objects.

Note that not all locations of standard symbols are required to have stan-
dard values. For example, the standard static symbol + used for addition has
a non-standard value at location (+, (0, dt)) for strictly positive infinitesimal
dt. In order to determine standardness of the interpretation of a symbol, all
locations associated with the symbol must be considered. Note also that a
standard function will always yield standard results for standard arguments.

We will use a syntactical criterion on rules which is sufficient to ensure
that a rule will not move from a standardly correct state into a standardly
incorrect state:

Definition 6.2.2. An ASM rule R is a non-standard ASM rule if the
following conditions are fulfilled:

(1) All FORALL-rules and CHOOSE-rules in R are effective.
(2) Non-standard symbols may only occur in assignment rules which assign

to a location of a non-standard symbol, or in the conditions of IF rules.

Non-standard ASM rules lead from standardly correct states to standardly
correct states:

Proposition 6.2.1. Consider a standardly correct interpretation q of a vo-
cabulary and a non-standard ASM rule R of the same vocabulary. Then each
follower of q according to R is standardly correct.

Proof. Assume by contradiction that a standard symbol s has no standard
interpretation after the step. Since the precursor state was standardly correct,
s was interpreted as a standard object in that state, i.e., some location of s
must have changed. Since in assignments to locations of s, only standard
symbols and variables can have been involved, and standard symbols could

54 6. Defining Hybrid Systems with ASMs

do no harm, it must have been a variable occurring in an assignment to a
location of s which must have been associated with a non-standard value
in the extended state which was the context of the assignment. Variables
are only introduced by CHOOSE and by FORALL, and since all these rules are
effective in a non-standard ASM rule, and no non-standard symbols can occur
there, we have a contradiction.

Note that an unrestricted FORALL- or CHOOSE-rule would have allowed
us to bind a non-standard value to a variable by a construction like FORALL
x:x=dt DO.... Note also that we might have allowed such constructs if in
the body of the FORALL- or CHOOSE-rule considered, only assignments
to non-standard symbols occur; but we believe that we do not need that
flexibility.

Normally, we will assume that the vocabulary of the non-standard ASM
considered contains non-standard symbols now and dt, and that the rule does
something like this:

|| now := now + dt
|| R

Here, R represents the activity of the system in addition to the flow of time,
and Rtime equals now:=now+dt, which is the standard case.

We will give a special name to rules which fulfill this condition:

Definition 6.2.3. A non-standard ASM rule R in which now and dt are
non-standard nullary symbols, now dynamic and dt static, in which dt is
interpreted as a strictly positive infinitesimal, and which can be described as
R′||Rtime, where Rtime ensures that if now is a real, it is guaranteed to be
incremented by dt in a step by the rule, is called a non-standard time
ASM rule, or NTASM rule.

When we consider an NTASM rule R, Rtime will commonly denote its timing
part. Typically, it can be assumed to be equal to now:=now+dt, but other
possibilities exist. See Sect. 10.3 for an example in which the time rule is
responsible for incrementing a simulation time in addition to the real time.

The fact that now is updated in each step of a system modelled by the
timing part of an NTASM rule implies, by the consistency requirement for
the synchronous composition in ASMs, that no other assignment in a real
time system modelled in this way may write to now: The progress of time is
thus ensured to be independent of the rest of the system.

An NTASM rule shows neither infinite activity nor hesitation: in a finite
interval of length l, at most � l

dt� discrete steps take place, which is an integer,
i.e., finite; and since we do not admit non-standard predicates in rules, there
is a specific first moment at which some predicate is true, if it ever is. Thus,
the two artifacts described for the STASM semantics are avoided. For the
second, it might be a matter of taste if it seems adequate to assume that
time is not dense; but with an adequate taste, the dissolution of this artifact

6.3 Simulation of an STASM by an NTASM 55

is real. For the first, the dissolution of the artifact sounds better than it is,
since NTASM systems might show a similar artifact: unlimited activity in
limited intervals of time. We discuss this in a bit more detail.

6.2.1 A Note on Zeno-ness in NTASMs

At the end of Sect. 3.1 on dense and discrete time domains we mentioned
the artifact of Zeno-ness (discussed by Abadi and Lamport [AL92]) which
occurs in some declarative formalisms based on dense models of time. Zeno
behaviors do not exist in NTASMs. But a problem very similar to Zeno-ness
can occur in NTASMs: A modelled system might show unlimited activity in
limited intervals of time. This is typically not admitted as result of an ade-
quate abstraction from a real system, in contrast to the abstraction to model
very short reaction times of the system by infinitesimals. The occurrence of
unlimited activity in a limited time interval can be a hint to a modelling
error, but it can also be understood as an artifact of the formalism, and can
lead to the same problems which Abadi and Lamport identify for Zeno-ness:

– It might make a proof system based on this semantics incomplete in spite
of the fact that only non-realistic runs of a modelled system do not fulfill
the property to be proved.

– It might make a system description or a specification inconsistent in the
sense that it only admits behaviors showing unlimited activity.
This would have the consequence that specifications which avoid the first
problem by simply using a limited-activity-requirement into the antecedent
are just vacuously true.

Thus, it can be expected that the check that an NTASM admits system be-
haviors with limited activity is part of the verification task for many systems.

In interleaving-based concurrent systems, a similar problem is being dealt
with by fairness constraints: They are used to express which system behaviors
can be considered as so unrealistic that they should be excluded from consid-
eration. The temporal logics typically used for the specification of properties
of interleaving systems are capable of expressing fairness constraints, so that
this artifact can be dealt with explicitly in the specification. In Chap. 7 we
develop a notation for a temporal logic which allows us to express that in
limited intervals of time, only limited activity occurs.

6.3 Simulation of an STASM by an NTASM

In this section, we will define a concept which allows us to compare the
standard semantics of an STASM rule and the non-standard semantics of a
related NTASM rule. Since we consider STASM rules and their semantics
as a variant of the classical way to define hybrid systems, they can serve
as comparison point for the specific possibilities and problems of systems
described as NTASMs.

56 6. Defining Hybrid Systems with ASMs

In order to do this, we will define a concept which helps to express that
for some STASM rule R and some time rule Rtime, [[R]]h and [[R||Rtime]] are
in close correspondence. This will be in the form of a simulation relation
asserting that each run of the STASM can be simulated with infinitesimal
precision by the NTASM.

We hope that we can make the concept we propose fairly plausible and we
will describe some sufficient conditions which may be fulfilled by R so that the
correspondence property between the hybrid semantics and the discrete se-
mantics holds. A rule for which the NTASM semantics simulates the STASM
semantics will be called “well-behaved”; this means that it can be interpreted
both as an STASM rule and as the non-time (i.e., discrete) component of an
NTASM rule basically in the same way.

What conditions should [[R||Rtime]] and [[R]]h fulfill so that we might say
that the first action system simulates the second? We propose to make this
concept relative to a set of start states A0. We partition the actions into
discrete actions and time actions.

Definition 6.3.1. Time actions of an STASM are those which only up-
date now.

Time actions of an NTASM are those which can be explained by the
time rule alone.

For both STASMs and NTASMs, discrete actions are the non-time ac-
tions.

For a run a of an action system from some state, the discrete steps are
the positions of discrete actions in a.

The idea is the following: We require that for each run of [[R]]h starting
in a state in A0, there is a corresponding run of [[R||Rtime]] starting from the
same state so that

– there is a time-order preserving bijection of the discrete actions of [[R]]h

and those of [[R||Rtime]] in which related actions occur at approximately
the same time and update the same locations to approximately the same
values (ignoring locations different from now updated by the time rule of
the NTASM rule), and

– that for each time action of [[R]]h, there is a (possibly empty) sequence of
time actions in the run of [[R||Rtime]] of approximately the same time span.

Note that for all time steps in [[R]]h but a (possibly existing) last one, the first
requirement implies the second. These requirements imply that the NTASM
can mimic each run of the STASM with infinitesimal precision.

Let us be more precise: We define first a distance measure on action sets
and the parts of action sets for which we need it:

Definition 6.3.2. For a fixed ASM, d denotes a function from pairs of some
elements (of different types) to R

+
0 with, for universe elements u and u′ of

the ASM,

6.3 Simulation of an STASM by an NTASM 57

d(u, u′) =

⎧⎨
⎩

0 if u = u′

1 otherwise if u �∈ R ∨ u′ �∈ R

min(1, |u − u′|) otherwise

For two pairs of a location and a value (�, u) and (�′, u′) of the ASM, d is
defined by

d((�, u), (�′, u′)) =
{

1 if � �= �′

d(u, u′) otherwise

For two actions a and a′ of the ASM, d(a, a′) is defined by

d(a, a′) =
{

1 if there is no bi-total relation of dom a and doma′

minR max(x,y)∈R d((x, a(x)), (y, a′(y))) otherwise

where R ranges over the bi-total relations of dom a and doma′.
The definition for actions is also used to define d(q, q′) for states q and

q′ of the ASM, where states are understood as mappings from locations to
values.

For two action sets A and A′ of the ASM, d(A, A′) is defined by

d(A, A′) =
{

1 if there is no bi-total relation of A and A′

minR max(x,y)∈R d(x, y) otherwise

where R ranges over the bi-total relations of A and A′.

For element pairs for which d is defined, it is a distance metric.

Proposition 6.3.1. d is a distance metric (i) on pairs of universe elements,
(ii) on pairs of updates, (iii) on pairs of actions or states, and (iv) on pairs
of action sets.

Proof. To show that d(x, x′) is a distance metric, we have to show for all
x, x′, x′′ so that pairs of these are in the domain of d: (a) d(x, x′) ≥ 0, (b)
d(x, x′) = d(x′, x), (c) d(x, x′) = 0 ↔ x = x′, and (d) d(x, x′) + d(x′, x′′) ≥
d(x, x′′).

For each of the cases (i). . . (iv) of the proposition, (a) and (b) are obvious,
(c) follows from a simple distinction of the different cases and (d) can be
inferred by contradiction, where for cases (iii) and (iv) it is used that the
composition of bijections is a bijection.

Note that the maximal value of 1 for d expresses that the arguments are very
different. The definition requires that a necessary condition for actions to be
similar is that the same sets of locations are updated by the actions, i.e., we
do not even allow infinitesimal differences in positions of the value-tuple part
of a similar locations.

Now we can define the simulation relation:

58 6. Defining Hybrid Systems with ASMs

Definition 6.3.3. Consider an STASM rule R and an NTASM rule R′ with
a common vocabulary S, and consider a set A0 of states over S. Then we say
that R′ simulates R infinitesimally for standard runs with finite ac-
tivity from A0 (abbreviated: R′ �A0 R) if and only if the following condition
holds:

For any standard run with finite activity a of [[R]]h from any standard
state q0 ∈ A0, there is a run b of [[R′]] from the same state q0 so that there
is a monotone bijection f from the discrete steps in b to the discrete steps in
a so that for all standard i in the domain of f , d(b(i), a(f(i))) � 0; and if
there is a last element of a and it is standard, then there is a last element of
b and d(b(maxdom b), a(max doma)) � 0.

We say that R′ strongly simulates R infinitesimally for runs from
A0 (abbreviated: R′ �s

A0
R) if the condition above holds even with all stan-

dardness assumptions removed.

The definition expresses the idea that R′ can mimic the standard part
(resp. all) of each standard run of R with infinitesimal precision, at least
if the standard run of R does not perform an infinite number of discrete
steps in a finite interval of time. A consequence is that for each standard
state reachable by R, there is an infinitesimally neighbouring state reachable
by R′. This definition does not allow action refinement, i.e., each discrete step
of the standard system is simulated by exactly one step of the non-standard
system.

A consequence of the definition is that for each standard state reachable
by R, there is an infinitesimally distanced state reachable by R′:

Proposition 6.3.2. R′�A0R implies that for each standard state q reachable
by R from A0 in a standard run, there is a state q′ reachable by R′ so that
d(q, q′) � 0.

Proof. Reachability of standard q by R in a standard run means that there is
a standard finite run a of R from some q0 ∈ A0 which leads to q. We consider
a run b of R′ from q0 which simulates a. Such a run exists by R′ �A0 R. By
induction on the number of discrete transitions in a, we conclude that the
states reached by corresponding discrete transitions in the runs a and b from
q0 are infinitesimally distanced, which completes the proof for runs ending in
a discrete action. For runs ending in a time action, we know that only now is
updated in the last actions, and by definition of simulation, it is updated to
infinitesimally neighbouring values.

6.4 Well-Behaved Rules

The simulation definition now enables us to define when an ASM rule R can
be interpreted both as the definition of an STASM and of an NTASM, and
that the NTASM interpretation encompasses the STASM interpretation. We
call such a rule well-behaved:

6.4 Well-Behaved Rules 59

IF now-lastEventTime = 1
THEN || clock := clock+1

|| lastEventTime := now
ELSE SKIP

Fig. 6.1. A non-well-behaved rule modelling a discrete clock.

Definition 6.4.1. An ASM rule R is called well-behaved for start
states A0 if R is an STASM rule, R||now:=now+dt is an NTASM rule,
and for any strictly positive infinitesimal value of the static symbol dt,
(R||now:=now+dt) �A0 R.

Well-behavedness of a rule is meant to express that it admits any infinitesimal
discretization of time. As an example, the rule given in Fig. 6.1 is not well-
behaved: the discrete version only works if dt divides 1. The problem can be
traced back to the equality comparison in the IF-condition.

As might be expected, well-behavedness, i.e., the fact that a rule admits
infinitesimal discretization, can be guaranteed by a form of continuity. An
especially simple sufficient condition for well-behavedness of rules is the fol-
lowing:

Proposition 6.4.1. Consider the STASM rule [[R]] as a function of its lo-
cations, and consider the topologies induced by the metric d (defined above)
on the universe and the range of [[R]]. If R||now:=now+dt is an NTASM rule
and [[R]] is continuous in all states for all its locations, then it is well-behaved
for all start states.

Proof. We have to show that for each standard run of [[R]]h from some stan-
dard state, there is a simulating run of R||now:=now+dt from the same state.
We use the abbreviation R′ = R||now:=now+dt.

First, we show that from neighbouring states, each standard step of [[R]]h

can be mimicked by [[R′]]. Consider states q, q′ with d(q, q′) � 0, q standard.

– By continuity of [[R]], d(q, q′) � 0 implies for standard q d([[R]](q), [[R]](q′)) �
0, which implies that for each standard discrete action of [[R]]h from q, there
is an infinitesimally neighbouring discrete action of [[R′]] from q′.

– If [[R]]h admits a standard time step of length l from q, this means that
υ ∈ [[R]](q[now �→ q(now) + l′]) for all l′ with 0 ≤ l′ < l. By continuity, this
implies υ ∈ [[R]](q′[now �→ q′(now) + l′ + δ]) for infinitesimals δ and for all
l′ with 0 ≤ l′ < l, which means that [[R′]] can do a sequence of time steps
from q′ which together mimic the time step of [[R]]h from q infinitesimally.

A (standard) induction on the number of discrete steps of [[R]]h completes
the proof.

Unfortunately, continuity in all locations is far too strong a requirement to
be helpful in practice. For example, we can not model a discrete clock counting
the time units with the rule in Fig. 6.2, where we assume that we start with

60 6. Defining Hybrid Systems with ASMs

IF now-lastEventTime >= 1
THEN || clock := clock+1

|| lastEventTime := now
ELSE SKIP

Fig. 6.2. A well-behaved rule modelling a discrete clock.

now=clock=lastEventTime=0. For example, the semantics of the rule is not
continuous for location now in states in which now=1. More generally, requiring
that a rule is continuous in all its locations for all its states means that by
the flow of time, an action dissimilar to some continuously possible one can
not become possible, since creation of an action which is not similar to an
already existing action will always lead to an discontinuity. Since υ is an
action dissimilar to any other action, this is a fairly strong restriction.

Fortunately, complete continuity is not necessary for well-behavedness:

Proposition 6.4.2. The rule of Fig. 6.2 is well-behaved for start states with
now=lastEventTime=clock=0.

Proof. Let us call the discrete clock rule R, and let us use the name R′ for
R||now := now + dt.

A system behavior of [[R]]h has alternating phases: at integer times n > 0,
the rule must do a discrete step updating clock and lastEventTime to n;
and between integer times, it can only let time pass. More precisely: Let a
be a run of [[R]]h from a start state. For all n ∈ N, the nth discrete action
in a, if it exists, updates both clock and lastEventTime to n, and the time
steps before the first and between these discrete action sum up to length 1,
and the time steps after the last discrete action, if they exist, sum up to a
length ≤ 1.

Let us now consider the runs of [[R′]]. Only time can pass up to the point
in time which is the first multiple of dt which is ≥ 1. Let us call this time
1 + δ, where δ is a non-negative infinitesimal smaller that dt. At that time,
clock is set to 1 and lastEventTime is set to 1 + δ. Then, it again takes
1 + δ − dt time units until the next discrete step is taken, when clock is set
to 2 and lastEventTime is set to 2 + 2δ. An induction shows that the nth
discrete step starts from a state at time n + nδ, and it sets clock to n and
lastEventTime to n + nδ.

Obviously, for standard n ∈ N, the nth discrete steps of the two systems
take place in infinitesimally distanced states and are infinitesimally distanced
(limited n implies infinitesimal nδ). Each standard time step of the standard
system of length l can obviously be mimicked infinitesimally by a sequence of
� l
dt
� steps of the non-standard system, or by a sequence of dt-steps leading

up to the next discrete step, for the standard time steps preceding discrete
steps.

6.4 Well-Behaved Rules 61

For standard states reached during runs of [[R]]h, [[R]] is right-continuous in
the location of now. This implies that it does not hurt much if the function is
evaluated an infinitesimal later. Additionally, the only other location which is
affected by the discretization error of now is lastEventTime, but this location
is only read in a term in which the errors of now and lastEventTime cancel
each other out.

Note that the distance between corresponding discrete steps of the stan-
dard and the non-standard system defined by the discrete clock rule increases
with time. There is an unlimited number n of discrete steps so that the cor-
responding states and steps will not be infinitesimally distanced. This has to
do with the fact that the infinitesimal discretization error sums up in the rule
described.

A rule in which the discretization error does not sum up in this way
is called strongly well-behaved. Here, we require that the infinitesimal
simulation does not only work for the standard parts of standard runs of [[S]]h:

Definition 6.4.2. An ASM rule R is called strongly well-behaved for
start states A0 if R is an STASM rule, R||now:=now+dt is an NTASM
rule, and for any strictly positive infinitesimal value of the static symbol dt,
(R||now:=now+dt) �s

A0
R.

From the proof above, we conclude:

Corollary 6.4.1. The rule of Fig. 6.2 is not strongly well-behaved for start
states with now=lastEventTime=clock=0.

A strongly well-behaved rule is analyzed in the proof of the following propo-
sition:

Proposition 6.4.3. The rule in Fig. 6.3 is strongly well-behaved.

IF now-clock >= 1
THEN clock := clock+1
ELSE SKIP

Fig. 6.3. A strongly well-behaved rule modelling a discrete clock.

Proof. In the STASM semantics, discrete transitions take place exactly at
times n ∈ N when clock is equal to n − 1. In the NTASM semantics of the
rule, for each n ∈ N there is a non-negative infinitesimal δn < dt so that the
nth discrete step is taken at time n + δn. Obviously, strong simulation holds.

The assumption that the step width of the simulating system is an in-
finitesimal is, for real systems, a helpful abstraction; in reality, noticeable
time discretization errors might arise. The distinction between well-behaved
and strongly well-behaved rules helps to check if these discretization errors
accumulate during the run time of a system.

62 6. Defining Hybrid Systems with ASMs

6.5 Summary

This chapter introduces a way to use ASMs to define classical timed sys-
tems based on an interval-sequence model of time (the STASM model). This
is done in order to have a reference for comparison with the infinitesimal-
step-width based approach. We encode the flow of time in the rule, not by
an extra formalism. This makes it necessary to discuss some artifacts of the
chosen formalization: infinite activity and hesitation. Then we introduce an
ASM-based way to define timed system for the infinitesimal-step-width model
of time (the NTASM model), we discuss syntactical restrictions for the rule
defining the algorithm and describe the tasks of the timing rule Rtime. We
describe in which guise the (classical) Zeno-ness artifact appears in our for-
malism. Finally, we compare the STASM and the NTASM interpretations of
the same algorithm, given by an ASM rule, by defining simulation and well-
behavedness: The fact that the effects of infinitesimal discretization of time
does not hurt is formalized by the concept of (strong) well-behavedness of an
ASM rule, which is formalized by the fact that the NTASM interpretation
can simulate each behavior of the STASM interpretation.

7. A Notation for a Temporal Logic

If Gurevich’s thesis is valid, ASMs can be used to model any sequential algo-
rithm on any abstraction level. But algorithms are defined in an operational
way, and they operate step by step. Often, a higher abstraction level than
this is wanted for describing properties of systems. Temporal logics of dif-
ferent kinds are proposed for this in computer science (see [Pnu77] for the
introduction of the concept into computer science, and [MP92, Lam94b] for
several well-developed approaches).

A well worked-out temporal logic consists of three components. One is a
concise notation for the specification of important temporal system proper-
ties. Normally the semantics of this notation is presented as a set of operator
definitions, reducing formulas of the logic to formulas of some first-order logic.
A second component is a proof system, i.e., a collection of axioms and proof
rules which allows the derivation of the validity of a formula without recur-
rence to the semantic definitions of the operators of the logic. And a third
component are proof techniques and heuristics for using the proof system.
This chapter will not present a logic in this sense; we will only describe a
concise specification notation for important system properties.

When a system is specified with a temporal logic, this is by using a formula
for characterizing a set of system behaviors. Behaviors are typically modelled
as functions from a time domain T to a domain of states A. States are often
modelled as assignments from a fixed set of locations, often formalized by
a finite set of symbols, into a fixed universe. As time domains, linear and
tree-like domains are most popular, where trees represent nondeterminism
more directly and in more detail. Both dense and discrete domains are used.
As already discussed in Chap. 3, we use a discrete model of linear time.

The operators of a temporal logic are typically defined by a first-order
predicate logic to be interpreted in positions of runs of the systems to be
specified. The reasons why they are used instead of their definitions are the
reasons why definitions are typically introduced elsewhere in mathematics:
(1) Using these operators, specifications can be written in a shorter form, and
(2) they make important concepts explicit by using a specialized notation for
them.

The conciseness of temporal logic notations results from the fact that the
defined operators allow references to points in time and the most important
relations between them to be made implicit. The approaches of Manna and

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_7,
© Springer-Verlag Berlin Heidelberg 2005

64 7. A Notation for a Temporal Logic

Pnueli and of Lamport mentioned at the beginning of the chapter use logi-
cal formulas which are interpreted over positions in infinite state sequences,
i.e., the structure over which such a formula is interpreted is an element of
(N0 → A) × N0.

We consider situations in which quantitative properties of the model of
time are important, and in which not only the states are relevant, but also
the updates resp. the actions which led into a state. It is convenient to use an
interval-based temporal logic for these situations, and to use an interpretation
context in which the sequence of actions connecting the states is explicit. In
[Mos85], an interval based logic for discrete time is defined; our operators are
more similar to the “Duration Calculus” of [CHR91] which is defined for a
dense model of time.

7.1 Semantic Domain

We will represent a system development as a pair (q, a) from A × A. Such a
pair defines in a canonical way a transition system run, which is a function
q from A by the following inductive definition:

q(0) = q
q(i + 1) = q(i)[a(i)], for all i where a(i) is defined

q is the sequence of states defined by the start state q and the action sequence
a. For finite sequences a, q is just one element longer than a. When we use
a function q, it will always be clear from context which q and a are used for
its definition.

7.2 Interval Terms and Focused Predicates

There are two categories of terms of our logic: interval terms and focused pred-
icates. Interval terms are interpreted over intervals in a system behavior, and
focused terms are interpreted over positions in a system behavior. As interpre-
tation contexts, we use elements from {(q, a, I) ∈ A × A × intervals(dom q)}
for interval terms and elements from {(q, a, i) ∈ A × A × dom q} for focused
terms.

We will define the syntax of terms of our logic as variants of terms of
ASMs as described in Chap. 5. Predicates are simply Boolean terms.

We will use two syntactic categories, each defined as variants of terms in
ASMs. Together with their syntax, we will now define their semantics.

Definition 7.2.1. Interval terms are to be interpreted over elements of
{(q, a, I) ∈ A × A × intervals(dom q)}. They are defined as terms of ASMs
with the restriction that no dynamic symbols occur in them, and with the
extension that there are two more forms of terms (and sub-terms) allowed
(where dynamic symbols in focused predicates are again admitted):

7.2 Interval Terms and Focused Predicates 65

– Count terms are of the form #p, where p is a focused predicate (see
below).

– The two-argument Boolean chop operator p1; p2 takes two interval pred-
icates.

Disallowing dynamic symbols makes interpretation over the interval un-
ambiguous. Count terms are interpreted as the (natural) number of positions
in the interval under consideration which fulfill the formula p; as defined be-
low, focused predicates are interpreted over positions in state sequences. A
chop term is interpreted as true if and only if the interval under consideration
can be split into two subintervals so that p1 holds in the first and p2 holds in
the second. We define the semantics formally further down.

Definition 7.2.2. Focused predicates are interpreted over elements of
{(q, a, i) ∈ A×A×dom q}. They are extensions of state predicates of the un-
derlying ASM. We allow the following additional forms of terms in a focused
predicate:

– A bar term p1”|p2 is a predicate, where p1 and p2 are interval predicates.
If one of the interval predicates is just true, it can be dropped, yielding a
term of the form p| or |p.

– For a rule R without free variables, the rule predicates enabled(R),
hasChoice(R), taken(R), takenAlone(R) and takenVacuously(R) are fo-
cused predicates.

Focused predicates are defined at positions in state sequences. A bar term
is true at a position if just before that position, an interval ends which fulfills
p1, and at that position, an intervals starts which fulfills p2. The vertical bar
represents the position just in front of the focus. Rule predicates are true if
in the state and step defined by the position under consideration, the rule is
enabled, taken, etc.

The formal definition of the semantics of interval terms and focused terms
is the following:

Definition 7.2.3. The semantics [[t]](q,a,I) of an interval-term t is defined
inductively:

– If the top-level structure of the term is that of a first-order term without
dynamic symbols, just take the meaning of this term in q, applying the in-
terpretation function [[·]](q,a,I) to the components of the top-level structure.

– [[#p]](q,a,I) =def |{i ∈ I | [[p]](q,a,i)}|
– [[p1; p2]](q,a,I) ⇔def

∃(k ∈ I ∪ {min(I) − 1}) : [[p1]](q,a,{i∈I | i≤k}) ∧ [[p2]](q,a,{i∈I | i>k})

The semantics of focused terms [[t]](q,a,i) is defined for positions in state
sequences:

– State symbols s in a focused predicate are just interpreted by [[s]](q,a,i) =
[[s]]q(i).

66 7. A Notation for a Temporal Logic

– The semantics of a bar term is defined as

[[p1|p2]](q,a,i) ⇔def

∃(k ∈ N0) : [[p1]](q,a,{n∈N0:k≤n<i})
∧∃(k ∈ N0 ∪ {ω}) : [[p2]](q,a,{n∈N0:i≤n<k})

– Rule predicates are defined by interpreting the rule function of the state
q(i). Since the rules are assumed to be closed, i.e., there are no free vari-
ables in them, we take the liberty of applying the function induced by a rule
to a state, not an extended state: the values of variables are irrelevant for
closed rules.
– [[enabled(R)]](q,a,i) ⇔def ∃a ∈ [[R]](q(i))
– [[hasChoice(R)]](q,a,i) ⇔def ∃a, a′ ∈ [[R]](q(i)) : a �= a′

– [[taken(R)]](q,a,i) ⇔def ∃a ∈ [[R]](q(i)) : a ⊆ a(i)
– [[takenAlone(R)]](q,a,i) ⇔def ∃a ∈ [[R]](q(i)) : a = a(i)
– [[takenVacuously(R)]](q,a,i) ⇔def ∃a ∈ [[R]](q(i)) : a = {}

Note that rule predicates are all interpreted as existence of an action in the set
of actions allowed by a rule in a step from state number i. “enabled” requires
that some action is possible. “hasChoice” expresses that in the current state,
the rule has a choice, i.e., two different actions are possible. “taken” just
requires that part of the effect in the step is consistent with a step of the
rule. “takenAlone”requires that the whole effect of the step can be accounted
for by the rule. “takenVacuously”means that the rule admits an empty action
in state i. It is typically used in negated form, in conjunction with “taken”,
and it is used to characterize steps in which a rule really does some work.

7.3 Abbreviations

We assume that we have the usual arithmetical predicate and function sym-
bols available in the static ASM vocabulary, with their usual interpretation.

Definition 7.3.1. We will use the following abbreviations:

– � =def #true: � is the cardinality of elements of the interval under consid-
eration. For an infinite interval, we write � = ℵ0.

– [] ⇔def (� = 0): True for the empty interval.
– {p} ⇔def (� = #p), for a focused predicate p: p is an invariant of the

current interval, which is possibly empty.
– [p] ⇔def {p}∧¬[], for a focused predicate p: p is an invariant of the current

interval, and that interval is nonempty.
– first ⇔def ¬([true]|)
– pUq ⇔def (p; q; true), for interval predicates p and q: This is similar to the

“until” operator of classical temporal logic, if interpreted over an interval
of infinite length.

7.4 Examples of Valid Formulas 67

– pWq ⇔def p ∨ (p; q; true), for interval predicates p and q: This is similar
to the “weak until” operator of classical temporal logic.

– �p ⇔def (true; p; true), for an interval formula p: this expresses that in
the current interval, there is a subinterval fulfilling p.

– �p ⇔def ¬�¬p for an interval formula p: this expresses that in the current
interval, all subintervals fulfill p.

– ◦p ⇔def (� = 1; p) for an interval formula p: this expresses that p is valid
starting with the second position of the current interval.

– takenNonvacuously(R) ⇔def taken(R) ∧ ¬ takenVacuously(R). This pred-
icate expresses that an R-step has taken place, and that this step was not
equivalent to a SKIP.

There are two rule predicates which are used to detect if a rule is taken in
some step: “taken” and “takenNonvacuously”. This deserves some comment.
Typically, “taken” is more helpful if the system to be described is modelled in
an interleaving fashion, since in that case, non-execution of a rule is typically
encoded by a HALT. In systems which are combined by synchronous execution,
non-execution of a rule is typically encoded by a SKIP, which is excluded from
consideration by “takenNonvacuously”.

7.4 Examples of Valid Formulas

In this work, we will not develop a calculus for our logical notation. We
will present some possible candidates for axioms, of which some match those
given in [CHR91] for the Duration Calculus. We will present them as seman-
tical propositions, to be proved by replacing the defined symbols by their
definitions.

Definition 7.4.1. We write |= P for an interval predicate or a focused pred-
icate P which is tautologically true, i.e., which holds in each model.

Proposition 7.4.1. Let P , Q be any focused predicates. Then:

|= #false = 0 (7.1)

|= #P ≥ 0 (7.2)

|= #(P ∨ Q) − #(P ∧ Q) = #P + #Q (7.3)

For all a, b ∈ N0,

|= (#P = a + b) ↔ (#P = a); (#P = b) (7.4)

These facts can be proved just by filling in definitions.
The following proposition describes some facts involving non-standard

concepts.

68 7. A Notation for a Temporal Logic

Proposition 7.4.2.

|=
⎛
⎝ limited(� ∗ dt) ∧ ¬ limited(#P)

→
∀stn ∈ N0 : �(infinitesimal(� ∗ dt) ∧ #P ≥ n)

⎞
⎠ (7.5)

|= limited(�) → infinitesimal(� ∗ dt) (7.6)

The first fact says that if something is true for an unlimited number of mo-
ments in a limited time span, than there is a concentration of such moments
in an infinitesimal time span. It follows from simple non-standard reason-
ing. For the second fact, remember that the step width dt is assumed to be
infinitesimal.

The following proposition collects some facts about rule predicates:

Proposition 7.4.3.

taken(R) → enabled(R) (7.7)

hasChoice(R) → enabled(R) (7.8)

takenVacuously(R) → taken(R) (7.9)

takenAlone(R) → taken(R) (7.10)

The facts are obvious consequences of the definitions.
Just recurring to the facts in Proposition 7.4.1 and standard and non-

standard arithmetics, we can deduce:

Proposition 7.4.4. Let P , Q be focused predicates. Then:

1. |= #¬P = � − #P
2. |= {P → Q} → #P ≤ #Q
3. |= {P}; {P} ↔ {P}

7.5 Fairness, Limited Activity
and Other Example Specifications

Our notation allows us to specify succinctly weak and strong fairness and
limited activity with respect to a rule R:

Definition 7.5.1. A rule R is treated weakly fair in an interval if the fol-
lowing formula is true:

wf(R) =def � ({enabled(R)} ∧ � = ℵ0 → # taken(R) = ℵ0)

A rule R is treated strongly fair in an interval if the following formula
is true:

sf(R) =def � (# enabled(R) = ℵ0 → # taken(R) = ℵ0)

7.6 Accountability of a Step to Some Rule 69

A rule R shows limited activity in an interval if the following formula
is true:

la(R) =def � (limited(dt ∗ �) → limited(# takenNonvacuously(R)))

An interval shows limited activity if in each interval of limited time
length, all but a limited number of state transitions are time-only steps, where
the effect of a time-only step is described by a rule Rtime:

� (limited(dt ∗ �) → limited(#¬ takenAlone(Rtime)))

Often, the time rule is just now:=now+dt, but in general, also dynamical
symbols different from now might be changed just by the flow of time. The
context will make it clear what kinds of changes are admitted in a pure time
step if the limited-activity specification is used.

The fairness definitions have wrong antecedents in finite intervals, i.e.,
they are only meaningful if interpreted over infinite intervals, as can be ex-
pected.

Other example specifications are:

– “A p-state is followed by a q-state between x and y time units.” Let p and
q be characterized by focused predicates:

�

(
∧ [p]; {¬q}; [q] → dt ∗ � > x

([p]; true) ∧ dt ∗ � > y → ◦�[q]

)

– “Each cr-phase takes only a limited number of steps.”

�([cr] → limited(�))

– “After a new input has been provided, the computation of the correspond-
ing output only takes negligible time.” We use two focused predicates “in-
putProvided” and “outputReady” to characterize the respective states.

�

⎛
⎝ [inputProvided]; {¬outputReady}; [outputReady]

→
infinitesimal(dt ∗ �)

⎞
⎠

7.6 On Accountability of a Step to Some Rule,
and an Application to Synchronous Systems

We note a fact about accountability of the effect of a step to some rules:

Proposition 7.6.1. For pairwise compatible rules R0, . . . , Rn without free
variables, [[takenAlone(R0|| . . . ||Rn)]](q,a,i) implies that we know exactly which
rules are accountable for some part of a(i): There is just one partition of a(i)
as ∪0≤j≤naj with ∀0≤j≤naj ∈ [[Rj]](q(i)).

70 7. A Notation for a Temporal Logic

Proof. If aj contains an update of a location l, compatibility of R0, . . . , Rn

implies that no rule but Rj can update l in state q(i), and
takenAlone(R0|| . . . ||Rn) implies that each location updated is updated by
some Rj .

The last proposition guarantees that for synchronously combined systems for
which we know all top-level components, we can attribute all non-SKIP system
activities as defined by “takenNonvacuously” unambiguously to the subsys-
tems. The proposition is only valid under the assumption that synchronously
executed rules do not update the same location, not even in a consistent fash-
ion. Perhaps this justifies our deviation from Gurevich’s original definition
which admitted consistent updates of a location by synchronously executed
rules.

As an example application, consider a synchronous system with the fol-
lowing properties:

– The computation of a reaction takes only a limited number of steps.
– Rule R is enabled only during the computation of a reaction.
– Starts of a computation of a reaction have a non-infinitesimal time distance.

Then, R is only limitedly active.
The first property above is an abstraction which is intimately correlated

with the basic assumption of synchronous systems, which is that the compu-
tation of a reaction only needs negligible time (where we interpret“negligible”
as “infinitesimal”). The second property is a technical assumption, and the
third property encodes another basic assumption of synchronous systems,
which is that the time distance of sequential inputs from the environment is
non-negligible.

Formally:

Theorem 7.6.1. Let cr be a state predicate describing if the system is cur-
rently computing a reaction.

Assume that R is at most enabled during the computation of a reaction:

|= enabled(R) → cr (7.11)

Assume that each phase of computing a reaction needs only a limited num-
ber of steps:

|= �([cr] → limited(�)) (7.12)

Assume that any interval in which at least two reaction computations start
is longer than infinitesimal:

|= �(#((¬true ∨ [¬cr])|[cr]) ≥ 2 → ¬ infinitesimal(dt ∗ �)) (7.13)

Formulas 7.11, 7.12 and 7.13 imply that R is limitedly active:

la(R) (7.14)

7.7 Accountability of a Step to Some Rule 71

We structure the proof into several lemmata:

Lemma 7.6.1. With the abbreviation ↑ cr =def ((¬true ∨ [¬cr])|[cr]),
Formula 7.13 implies �(limited(dt ∗ �) → limited(# ↑ cr)).

Proof. The first fact in Proposition 7.4.2 implies

limited(� ∗ dt) ∧ ¬ limited(# ↑ cr) → �(infinitesimal(� ∗ dt) ∧ # ↑ cr ≥ 2)

Formula 7.13 contradicts the consequence, which means that the antecedent
is false, which is propositionally equivalent to

limited(� ∗ dt) → limited(# ↑ cr)

Since the interval is arbitrary, this proves the lemma.

Lemma 7.6.2. Formula 7.12 implies

�(limited(# ↑ cr) → limited(#cr))

Proof. Formula 7.12 implies �([cr] → limited(#cr)). We prove the lemma by
induction, relativized to standard elements of N0, on # ↑ cr.

Induction start: An interval with zero or one rising cr-edges can be de-
scribed as {cr}; {¬cr}; {cr}; {¬cr}. There are a, b ∈ N0 with ({cr} ∧ � =
a); {¬cr}; ({cr} ∧ � = b); {¬cr}. Since both a and b are limited, also a + b is
limited, which implies ({cr}; {¬cr}; {cr}; {¬cr}) → limited(#cr).

Induction step: Let n ∈ N0, n ≥ 2 be standard, i.e., limited. Then (# ↑
cr = n + 1) → (# ↑ cr = n); (# ↑ cr = 1). The number of cr-states in
each subinterval is limited by the induction hypothesis; thus, also the sum is
limited.

Note that normal induction, i.e., induction which is not relativized to the
standard elements of N0, can not be used to prove some non-classical predi-
cate for all N0.

Lemma 7.6.3. Proposition 7.4.3 and formula 7.11 imply

�(limited(#cr) → limited(taken(R)))

Proof. The second fact of Proposition 7.4.4, the first fact of Proposition 7.4.3
and formula 7.11 imply that there are at most as many states in which R is
taken as there are cr states. For natural numbers, if the larger one is limited,
so is the smaller one.

Now we can do the proof of Theorem 7.6.1:

Proof. Consider an arbitrary interval. The antecedent of la(R) is limited(dt∗�).
Apply Lemmas 7.6.1, 7.6.2 and 7.6.3 in that order.

72 7. A Notation for a Temporal Logic

7.7 Summary

In order to be able to succinctly describe properties of systems based on the
infinitesimal-step-width approach to modelling timed systems, a novel nota-
tion for a temporal logic is developed. It uses two types of terms: focused
terms are interpreted over positions in a system behavior, and interval terms
are interpreted over intervals. The logic is similar to the Duration Calculus
with respect to its operators. An extension is the “bar term” in which two in-
terval terms are combined into a focused term, and another extension are rule
predicates. Another specialty of our approach is that the semantic domain
over which the formulas are interpreted contains not just the state sequence
of a system behavior, but the sequence of actions which lead to the state se-
quence. The notation is rich enough to express important predicates of other
temporal logics. Important concepts of reactive systems can be formalized:
weak and strong fairness and limited activity. An application of the notation
to a problem of modelling synchronous systems in our time model is given,
which proves limited activity of a synchronous system.

8. Concurrency and Reactivity: Interleaving

A system is called concurrent if it is considered at an abstraction level where
during its run-time, there are moments when several subsystems are active.
For real-time systems, this is a typical case. For non-quantitative linear time,
the interleaving approach and the synchronous approach are the most impor-
tant modelling strategies. Since real-time models build on non-quantitative
models and since we investigate a linear-time model, we will investigate how
these two strategies are expressed in the ASM formalism and, more specifi-
cally, as NTASMs.

We will call the subsystems of concurrent system “processes”, and algo-
rithms in concurrent systems will typically be called“protocols”. A very typi-
cal example are mutual exclusion protocols which ensure that a non-shareable
resource is only used by one process at a time, and that a process which wants
to access the non-shareable resource will get access to it eventually. Concur-
rent systems are contrasted to sequential systems in which one subsystem
finishes its task, producing some outputs, before the next takes the outputs of
its predecessor as inputs. A concept intimately related to concurrence is the
distinction between reactive and transformational systems [HP85]: Reactive
systems are systems which listen to their environment and which react on it
depending on their state, and where this cycle is performed repeatedly, while
transformational systems are systems which, after having read their in-
puts at the start, are not influenced by the environment until they have
computed their final result (i.e., they just transform an element of a set of
inputs into some output), and then they finish. When larger systems are put
together from subsystems, transformational systems are typically combined
by some kind of sequential composition, resulting in sequential systems; and
reactive systems are typically combined by some kind of parallel composition,
resulting in concurrent systems. Thus, reactive systems might be called the
“open” counterpart of concurrent systems, in the sense that for the case of a
concurrent system, we assume that the whole system is given, i.e., there is
no relevant unknown environment, while for the case of a reactive system, we
assume that we do not know the whole system.

Concurrent systems occur in several variants. One are distributed sys-
tems, in which the abstraction is adequate that the steps of the reactive
systems running in parallel are not necessarily totally ordered, but a partial
order between the steps is assumed which expresses a causality relation be-
tween the steps [Gur95a], or additionally an exclusion relation is assumed

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_8,
© Springer-Verlag Berlin Heidelberg 2005

76 8. Concurrency and Reactivity: Interleaving

between the steps which expresses that if some step occurs in a system run,
other steps may not occur in that run (event structures, [Win88]). In this
work, we deal with quantitatively timed systems, which means that each
step will be assigned to a moment in real-numbered time. This implies that
the abstractions used for distributed concurrent systems are not adequate in
our context; thus, we will not go into the details of the models for distributed
systems.

For modelling concurrent rsp. reactive systems with a totally ordered
model of time, two main approaches can be found. One is the interleaving
approach, to be described in the rest of this chapter, and the other is the
synchronous approach, to be described in Chap. 9. We will describe the
two variants with their respective application areas, their strong points, their
weaknesses, and their expression in our model.

8.1 The Interleaving Approach to Concurrency

When concurrency is expressed by interleaving, system behaviors are mod-
elled as sequences of steps so that in each step of the whole system, only one
subsystem (also called “process”) performs a step. Thus, the set of possible
runs of the whole systems consists of interleavings of the steps of the pro-
cesses (see [MP92, MP95, Lam94b] for popular models of concurrency based
on interleaving).

Typically, not all interleavings of process steps are allowed: fairness restric-
tions are used to exclude interleavings which are assumed to violate conditions
given in the real world. In order to understand the fairness restrictions, we
shortly describe the intuition behind the interleaving idea.

At first sight, the interleaving approach might seem to be appropriate for
the description of concurrent processes which are executed on a single proces-
sor. In this situation, at most one process can do a step in each moment – the
steps represent atomic actions of the processes. Restrictions on the interleav-
ings of steps of the different processes which are admitted by an interleaving
semantics correspond to properties which an implicit scheduler is assumed to
fulfill which determines how the processes are executed. Such properties are
called fairness constraints. There is a large number of different variants of
fairness constraints, but two variants are especially common, which are called
weak fairness and strong fairness (see [Fra86] for an overview).

In order to define fairness constraints, the concept of enabledness of a
transition and the concept of a transition being taken is used. Typically, the
set of possible state transitions which a process can perform is defined as a
set of functions τ : A → P(A), where τ(q) represents the possible effects of
performing the (in general nondeterministic) transition τ in state q.

Definition 8.1.1. If τ(q) is nonempty, then τ is defined to be enabled in
q. If for all q, τ is disabled or τ(q) is a singleton, τ is called deterministic.
Otherwise, i.e., if for some q, τ(q) has more than one element, τ is called
nondeterministic.

8.1 The Interleaving Approach to Concurrency 77

Note that a process might be nondeterministic even though all its transitions
are deterministic, because there might be states in which several transitions
with different allowed follower states might be enabled.

In an ASM model of a concurrent system in which each τ is in each state
either disabled or deterministic (which is a typical case), we can model each
τ by a rule of the following form:

IF <guard> THEN <parallelAssignments> ELSE HALT

<guard> is a term which evaluates to a Boolean. It determines if the statement
is enabled. <parallelAssignments> is a number of assignments which are
performed in parallel. We call rules of this form “guarded assignments”. They
are the ASM representation of the basic transition descriptions of Dijkstra’s
“guarded command” language [Dij75].

Now let us define what it means for a transition τ to be taken in a system
run.

Definition 8.1.2. Consider a run of a system, i.e., a function σ : N0 → A.
We say that τ is taken at position i ∈ N0 of σ if qi+1 ∈ τ(qi).

Note that in general, several transitions might be considered to be taken at
some position i of σ, but in many applications it is typically unambiguous
which transition is taken for any position in a run.

Definition 8.1.3. In a run σ, a transition τ is treated weakly fair if there
is no moment so that in σ from that moment on, τ is enabled all the time
without being taken, and τ is treated strongly fair in σ if there is no moment
so that from that moment on, τ is infinitely often enabled without ever being
taken.

In Chap. 7, formalizations of the concepts of a rule being taken or a rule being
treated fairly have been introduced. Obviously, they fit these definitions.

In interleaving based models of concurrent systems, weak fairness is typi-
cally used to ensure that independent processes are treated with some mini-
mal amount of fairness: no transition of a process which is willing to work all
the time from some moment on can be discriminated against by the scheduler
forever. For communication or coordination statements, this kind of fairness
is too weak: The enabledness of this kind of statements depends on the state
of concurrent processes. If τ toggles from enabledness to disabledness ever
and ever again, e.g., because some concurrent processes enter and leave their
critical sections all the time, and the scheduler “asks” τ if it wants to work
only at moments at which it is disabled, it will never be scheduled. In order
to ensure that also in such scenarios, τ will be scheduled, τ must be treated
strongly fair. Note that for transitions which can only be disabled by being
taken, weak fairness and strong fairness are equivalent. Manna and Pnueli
[MP92] use the terms strong and weak fairness in the sense just described.

78 8. Concurrency and Reactivity: Interleaving

An ASM model of a concurrent system with finitely many rules mod-
elled by fair interleaving can express the nondeterminism by the following
construct:

ORR∈Rules R

The indexed OR notation abbreviates a nondeterministic choice between the
finite set of rules in Rules, which are used to denote the set of rules describing
the transitions of the system. The fairness constraints can not be expressed in
the basic ASM notation; they have to be expressed semantically, by describing
which of the alternative rules have to be treated with which kind of fairness
constraint.

8.2 Some Remarks on Fairness

Manna and Pnueli [MP92] call fairness the difference between nondetermin-
ism and concurrency. Unconstrained nondeterminism does not adequately
describe concurrent systems, since it allows too unrealistic runs, or more
specifically: unfair runs.

If it was not for fairness, the set of all the transitions T of some process
might be combined to one of the form λ(q) : ∪τ∈T τ(q), but since different
transitions of a process might have to be treated with different kinds of fair-
ness, a process is typically described by a set of transitions rather than by just
one transition. As mentioned, this requirement applies only to formalisms in
which liveness properties are to be specified and proved. If a formalism is
only used for safety properties, the whole process can be represented by just
one transition. In Gurevich’s proposal to extend the ASM formalism to the
description of distributed systems [Gur95a], fairness constraints are not dealt
with, but they can easily be incorporated into the model, by describing each
process not with only one rule but with a (finite) set of rules, where each
single rule can be associated with a fairness constraint.

The fairness concepts discussed here are no quantitative concepts. If two
transitions τ and τ ′, which are to be treated weakly fair, are continuously en-
abled in a run, a weakly fair scheduler might on average schedule τ a thousand
times more often than τ ′, or it might even become more and more discrim-
inating against τ ′ in time. Thus, these fairness concepts are quite minimal,
not intended to be implemented as such, but meant as minimal constraints
on an implicit scheduler of a concurrent system which nevertheless suffice to
prove important properties of many protocols. If a protocol is proved to be
correct if the scheduler can be assumed to fulfill the minimal fairness types
just described, then it is also expected to be correct for realistic schedulers,
which typically can be assumed to fulfill the minimal properties.

Fairness as defined here is admittedly no effective concept. This idea can
be made formal by showing that fairness is equivalent to unbounded nonde-
terminism [Fra86].

8.3 Properties 79

8.3 Properties

We now proceed to describe how properties of concurrent systems are formal-
ized, and we describe a classification of properties which is especially relevant
for interleaving-based concurrency.

Definition 8.3.1. A property is a set of system behaviors, i.e., for some
fixed state space A, a subset of N0 → A.

We say that a concurrent system has a property P if all system behaviors
belong to P .

Often, two basic kinds of properties are distinguished of concurrent sys-
tems described with an interleaving approach. These are called safety prop-
erties and liveness properties.

A safety property intuitively claims that something bad does not happen:
The idea is that in each system behavior not belonging to a safety property,
there is a precise moment at which something bad has happened. This is
formalized in the following way:

Definition 8.3.2. A property P is a safety property if for each state se-
quence σ not belonging to P , there is a moment i ∈ N0 so that no state
sequence σ′ which is identical with σ up to moment i belongs to P .

See [AS85] for a topological characterization of safety and liveness prop-
erties. We cite some results.

Proposition 8.3.1. In the Baire topology on N0 → A, which is induced
by the metric d(σ, σ′) = (σ = σ′ ? 0 : 1

1+max{i∈N0 | ∀j<i:σ(j)=σ′(j)}), safety
properties are the closed sets.

Let us now proceed to the characterization of liveness properties. Intu-
itively, these are properties so that whatever happens in a system behavior
in a finite time, there is an extension of the finite prefix which belongs to P .

Definition 8.3.3. A subset P of N0 → A is a liveness property if for each
finite sequence of states, there is an element σ ∈ P so that the finite sequence
of states is a prefix of σ.

With the topology as defined in Proposition 8.3.1, we have:

Proposition 8.3.2. Liveness properties are the dense sets of the Baire topol-
ogy on N0 → A.

This follows directly from the definition of liveness properties.
Since each set of elements can be defined as the intersection of some dense

and some closed set of a topology, we can deduce with Alpern and Schneider:

Theorem 8.3.1. Each property of N0 → A can be defined as the intersection
of a safety property and a liveness property.

80 8. Concurrency and Reactivity: Interleaving

Typical safety properties are invariants. A typical liveness property is
termination of a process. It can be shown that in order to prove that a system
fulfills some safety property, we do not need the fairness restrictions. Fairness
constraints are only necessary in order to prove liveness properties. Not to
use fairness constraints makes for a simpler theory, which makes it plausible
that some approaches to modelling concurrent systems only deal with safety
properties. The basic ASM formalism, which does not include safety notions,
can describe enough features of a system to derive its safety properties, but
not its liveness properties.

8.4 Interleaving NTASM Models

As a general framework for modelling interleaving-based concurrent systems
as an NTASM, we associate a rule with each concurrent agent in the following
manner:

Definition 8.4.1. An interleaving NTASM model of a concurrent sys-
tem consists of the following components:

– A set of (sequentially executing) agents, represented by an effective set.
We characterize agents by the unary predicate symbol Agent. The agent set
may be static or dynamic. The latter case allows us to model that agents
are generated or destroyed in the course of a computation.

– A finite static set of rule identifiers. Each rule identifier r is associated
with a rule, which we denote by Rr.

– A mapping from agents to rule identifiers. We use a unary function rule
from agents to rule identifiers to represent this mapping.

– A set of fairness requirements for agents, in the form of two unary pred-
icates wf and sf characterizing the agents which are to be treated weakly
fair and strongly fair, respectively.

Typically, an agent will, during the time it exists, be associated to the same
rule, and its value in the fairness-defining functions wf and sf also does not
change. We can assume that an agent exists as long as the rule mapping
associates a rule with it. Destruction of an agent is modelled by the agent
being removed from Agent and from the domains of rule, wf and sf.

We can describe the operational part of the interleaving semantics by a
rule scheme which represents a scheduler of a non-fair interleaving system:

Definition 8.4.2. An interleaving NTASM model scheduler is a rule
of the following form:

|| now := now + dt
|| OR SKIP

OR CHOOSE (a:Agent) IN
OR IF rule(a)==r1 THEN Rr1 ELSE HALT
OR ...
OR IF rule(a)==rn THEN Rrn ELSE HALT

8.5 On the Appropriateness of the Interleaving Abstraction 81

The list of OR-prefixed statements inside the CHOOSE has one line for each rule
identifier ri and each associated rule Rri .

We will assume that execution of Rri is in no state equivalent to SKIP.
This is in order to ensure that we can recognize unlimited activity of the
interleaving scheduler in an interval.

Note that the CHOOSE construct in the definition selects only one of the en-
abled agents, by the definition of the semantics of CHOOSE. Note also that
each rule Rri might contain occurrences of the unbound variable a, which it
can use to refer to the agent for which it works.

The fairness requirements are used in the semantics of an interleaving
NTASM model to restrict the set of its runs.

Definition 8.4.3. An infinite sequence σ of states is a run of an interleaving
NTASM model if the following conditions are fulfilled:

– Each step of σ is a step of the same interleaving NTASM model scheduler.
– For each agent a, if from some point in the sequence on, the rule associ-

ated with rule identifier rule(a) is enabled continuously and wf(A) holds
continuously, the rule is taken infinitely often.

– For each agent a, if there is an infinite number of states in the sequence
so that sf(a) holds and the rule associated with rule identifier rule(a) is
enabled, the rule is taken infinitely often.

Note that fairness constraints can be expressed “almost operationally” if we
allow infinitely branching non-determinism [Fra86]. We feel that a declarative
specification of fairness at the level of runs is simpler.

This definition allows us, for example, to model the Fair Transition Sys-
tems which Manna and Pnueli use as the semantical basis of their approach
to concurrency [MP92, MP95]. The only restriction is that we require the
basic steps, the transitions of Manna and Pnueli, which are represented by
ASM rules, to be effective.

8.5 On the Appropriateness
of the Interleaving Abstraction

The idea of a uniprocessor scheduling transitions from a set of processes in a
fair manner seems to be the most natural interpretation of the interleaving ap-
proach to concurrency, but also distributed systems are commonly described
with an interleaving semantics. Two steps s and s′ which are unrelated in the
partial order of steps of the total system, i.e., for which it is not determined
which is performed before the other or if they are performed synchronously,
give rise to a partition of the set of interleavings into two subsets: One in
which s takes place before s′, and another in which s′ takes place before s
(sometimes, it is allowed that the transitions are performed synchronously, in
which case a third subset would have to be defined). Non-causality between

82 8. Concurrency and Reactivity: Interleaving

two steps is expressed in the interleaving linear time model by the existence
of two runs so that in one, s precedes s′ and in the other, it is the other way
round. In the interleaving approach, the a priori plausible idea to also allow
runs in which the two steps are taken synchronously is not admitted.

The decision to allow only interleavings of the transitions of processes and
to disallow synchronous or overlapped execution of such steps makes for fewer
global transitions of the concurrent system composed of the processes: The
set of transitions of the system is just the union of the transitions of the sub-
systems. If also synchronous execution of transitions of concurrent processes
was admitted, this would in general lead to a number of global transitions
which is exponential in the number of processes. Many proof techniques of
properties of a concurrent system use a case distinction over all global tran-
sitions. This makes the interleaving approach attractive.

The decision to model a concurrent system by interleaving introduces
nondeterminism (which is restricted by fairness constraints). While this fair
nondeterminism is in some cases an appropriate abstraction, e.g., if the steps
of the runs of a concurrent system are best modelled as a partial order, there
is also a large class of applications in which this is not the case. For example
in hardware systems, there is an abstraction level at which it is best assumed
that the processes of the concurrent systems work in perfect synchrony. If
such systems are modelled with an interleaving semantics, nondeterminism
is introduced which is not present in the original concurrent system, and the
synchronization between the processes must be encoded explicitly. While this
should be possible, the interleaving approach introduces a complexity into
the model which is only necessary because the interleaving models do not
provide the appropriate means for modelling the synchronous composition of
subsystems. In order to model such systems, the synchronous approach can
be used, which is described in Chap. 9.

8.6 Summary

For linear-time concurrent systems, two composition strategies are often cho-
sen: interleaving and synchronous composition. This chapter discusses impor-
tant concepts of the interleaving approach and describes how it can be used
in the current framework.

9. The Synchronous Approach to Concurrency

Synchronous systems are concurrent systems in which the components pro-
ceed in a lockstep fashion. An early investigated model of synchronous sys-
tems are cellular automata [vN66, Vol79], where the synchronously working
components, which are called “cells” in this context, communicate according
to some regular interconnection scheme, so that each cell only communicates
with its neighbors. This abstraction is appropriate in applications in which
the signal travel time in the system is not negligible. A more general model
of synchronously working systems assumes a broadcasting communication,
i.e., it assumes that an output of a component is instantaneously visible to
each other component. In this section, we will investigate such a model of
synchronous systems.

9.1 Reactive Systems as Mealy Automata

The synchronous approach to reactive systems can in principle be character-
ized very simply: A reactive system is just an input-enabled nondeterministic
Mealy automaton. This is a variant of an I/O automaton [LT87].

Definition 9.1.1. An I/O automaton is a tuple (A, A0, I, O, δ) where:

– A is a set of states.
– A0 ⊆ A is the set of initial states.
– I is the set of inputs.
– O is the set of outputs, disjoint from the inputs.
– δ : (A × I) → P(A × O) is the step function.

An I/O automaton is input-enabled if for all (q, i) ∈ A × I, δ(q, i) is
non-empty.

An I/O automaton is deterministic if A0 is a singleton and for all
(q, i) ∈ A × I, δ(q, i) is a singleton.

A Mealy automaton is an I/O automaton in which A, I and O are
finite.

The elements of δ(q, i) are the possible effects of an input i in state q: If
(q′, o) ∈ δ(q, i), then the system can go from state q under input i to state
q′ and output o to the environment. We call (q′, o) a possible reaction for

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_9,
© Springer-Verlag Berlin Heidelberg 2005

84 9. The Synchronous Approach to Concurrency

(q, i). Input-enabledness of an I/O automaton means that in each state there
is a follower state for each input. Note that deterministic I/O automata are
input-enabled.

The behavior of an input-enabled I/O automaton is interpreted in the
following way: The system starts in a state q ∈ A0 and waits for some input.
After some time, input i ∈ I arrives, and instantaneously, the system selects a
possible reaction (which always exists, because of input-enabledness), moves
to the state part of the reaction and outputs the output part of the reaction.
Then it starts waiting again for the next input.

The instantaneous computation of the reaction on some input is called a
macro-step. Typically, this macro-step is implemented by a sequence of micro-
steps. If an I/O automaton is implemented as a real system, the selection of
a reaction takes some time, and, thus, it is an abstraction to assume that the
reaction takes its effect instantaneously when an input arrives. For a given
application, the synchrony hypothesis is the claim that this abstraction
is appropriate: The time needed for macro-step of the implemented I/O au-
tomaton is negligible in comparison to the reaction times of its environment.

Applications for which the synchrony hypothesis holds are typically not
well described by interleaving concurrency. One reason is that the inherent
nondeterminism of interleaving systems is only restricted by fairness, and the
fairness types defined are not well suited to model that the reaction to some
input be immediate – at least one would need a specific interpretation. A way
to extend fairness based formalisms is to define a subset of the transitions
as urgent, which means that they must be executed as soon as they are
enabled (or before any non-urgent transition is taken, since in general, several
transition might be enabled in some state, and only one transition can be
taken in a step of an system based on interleaving concurrency). Such an
approach could combine synchrony and interleaving.

In applications which are typical for synchronous systems, there is not
much need for interleaving; rather, they are deterministic and have a fixed
structure, and since they have a finite number of states, inputs and outputs,
they are Mealy automata. Hardware systems and process controllers are typ-
ical examples. The formalism used for describing such applications does not
have to deal with nondeterminism and fairness. The problem lies elsewhere:
It consists of describing a Mealy automaton with large sets of states, inputs
and outputs in a way which allows the structure to be dealt with in a com-
positional way. This means that it should be specified, designed, understood,
analyzed, optimized, debugged, possibly also compiled, etc., by dealing with
the elements of some partition of the synchronous system and putting to-
gether the partial work results in order to construct the work result for the
entire system.

Basically, it is only the transition function δ which has to be defined.
Thus in synchronous systems, the task of defining a reactive system can be
reduced to defining one macro-step of the system, which is just some trans-
formation of inputs (the current state and the input event) into some results

9.1 Reactive Systems as Mealy Automata 85

(the next state and the output reaction). Thus, what is needed for defining
a synchronous reactive system is exactly what Harel and Pnueli [HP85] call
a transformational system. This might be considered as a contradiction in
terms, since reactive systems and transformational systems are considered to
be disjoint classes. This contradiction dissolves if we admit that a system can
be transformational at one level of abstraction and reactive on another. Syn-
chronous systems can be considered as reactive systems either at a higher
abstraction level than that of a single macro-step – where the synchronous
system describes a sequence of macro-steps which are reactions on inputs
from the environment, fitting exactly the definition of a reactive system–and
also if we consider a lower abstraction level – where a single step of the
synchronous system is computed as the effect of the work of concurrent
modules, each reacting on inputs from other modules, as will be discussed
further down in more detail, and where each such module also fits nicely the
definition of a reactive system.

Let us consider synchronous systems on the abstraction level where they
are transformational. Classical techniques for describing functions in a man-
ageable way are:

1. Hierarchy: Use step-wise refinement [Wir71] to develop a detailed design
or an implementation from a high-level, i.e., more abstract design, repre-
senting also the higher design levels as procedures or functions explicitly
in the implementation.

2. Modularity: Decompose a unit of a higher abstraction level into smaller
units, called modules [Par72]. The task of a higher-level module is split
into sub-tasks which are dealt with by several lower-level modules, which
possibly interact in performing their work.

The only difference between the classical approach to the definition of a tran-
sition function and the approach often used for synchronous systems is that
in order to compose modules into higher-level units, classical approaches typ-
ically used only deterministic selection, repetition and an operator for se-
quential composition, while the different approaches used for synchronous
systems use additionally some kind of parallel (or concurrent) composition
of submodules. The latter also makes necessary some kind of communication
mechanism for submodules, which for many synchronous formalisms can be
understood as a shared-variable approach. This means that a partial result
computed by some module is instantaneously available to all other modules
which monitor the location of the result. Halbwachs [Hal93] calls this ap-
proach “broadcasting”, since it is a form of one-to-many communication not
involving any synchronization on the part of the sender1.

1 Neither the classical nor the synchronous approach to describing transformational
systems uses explicit nondeterministic selection, and where nondeterminism is
introduced in the use of a synchronous formalism, this is typically considered to
be a designer error (most synchronous formalisms do not admit nondeterminism).

86 9. The Synchronous Approach to Concurrency

There are many different proposals for modularly describing Mealy au-
tomata. ESTEREL [BdS91, BG92, Ber99] is an imperative programming lan-
guage. STATECHARTS [Har87] is a graphical formalism, based on some
extensions of finite automata, for operational system specification; ARGOS
[Mar89, Mar90] can be considered as a version of StateCharts with a cleaned-
up semantics. LUSTRE [HCP91] is a functional stream-processing language.
Signal [LBBG85, LGLL91] is a stream-processing language with a constraint-
programming flair. The system description language of the model-checking
tool SMV is a synchronous language [McM93]. VERILOG [TM95, Gor95] and
VHDL [LMS86] are hardware description languages. Halbwachs [Hal93] gives
an overview of some synchronous formalisms proposed for programming. In
order to get some order into this zoo of synchronous formalisms, we inves-
tigate some concepts which are important for several of the formalisms in a
general setting.

9.2 Composing I/O Automata

On the abstraction level of I/O automata, the composition of two syn-
chronously proceeding systems can not be expressed conveniently. We use
more structure for the sets of inputs, outputs and state. We model A, I and
O as functions from sets of set-specific locations to some universe U:

Definition 9.2.1. A structured I/O automaton is a tuple (U, LQ, LI , LO,
A0, δ), where

– U is a universe of values,
– LQ is a set of state locations, defining the set of states A = LQ → U,
– LI is a set of input locations, defining the set of inputs I = LI → U,
– LO is a set of output locations, defining the set of outputs O = LO → U,
– L

Q, L
I and L

O are pairwise disjoint,
– A0 ⊆ A is the set of initial states,
– δ : ((LQ ∪ LI) → U) → ((LQ ∪ LO) → U) is the transition function.

We call LQ ∪ LO the set of controlled locations. The values of these loca-
tions have to be determined in a macro-step. In contrast, the values of input
locations are only read during a macro step.

We call L = LQ ∪ LI ∪ LO the set of locations.

In the obvious way, a structured I/O automaton defines an I/O automaton.
The concepts of input-enabledness, determinacy, and Mealy automata are
transferred from I/O automata.

In order to be combined in parallel, two structured automata must fulfill
a compatibility condition:

Definition 9.2.2. Two structured I/O automata are compatible if they are
defined over the same universe, the set of state locations of each is disjoint
from the locations of the other, and the sets of output locations are disjoint.

9.2 Composing I/O Automata 87

Note that compatibility implies that at most one automaton controls a given
location, and that output locations of one automaton may be input loca-
tions of the other. It is over these common locations that the automata can
communicate when they are combined.

We are now prepared to define synchronous composition of structured I/O
automata:

Definition 9.2.3. Let P1 and P2 be two compatible structured I/O automata.
Then their synchronous composition P = (P1||P2) is defined by

– P.LQ = P1.L
Q ∪ P2.L

Q
2 ,

– P.LI = (P1.L
I ∪ P2.L

I) − (P1.L
O ∪ P2.L

O),
– P.LO = P1.L

O ∪ P2.L
O,

– P.A0 = {q1[q2] | q1 ∈ P1.A0, q2 ∈ P2.A0}
– For all q ∈ P.A, i ∈ P.I, δ(q[i]) is defined as

{q′[o] | q′ ∈ P.A, o ∈ P.O,
(q′[o] ↓ P1.L) ∈ P1.δ(q[i[o]] ↓ (P1.L

Q ∪ P1.L
I)),

(q′[o] ↓ P2.L) ∈ P2.δ(q[i[o]] ↓ (P2.L
Q ∪ P2.L

I))}
The input locations of the combination of the two automata are those inputs
of either automaton which are not controlled by the other automaton. As the
set of possible results of processing input i in state q, we admit all mappings
from state and output locations to universe elements which are consistent
with possible results of both combined automata.

Unfortunately, the synchronous composition operator just described does
not fulfill a condition which is important for synchronous systems: The com-
position of deterministic systems should be deterministic. We investigate the
problem and a solution for structured Mealy automata.

Proposition 9.2.1. There are compatible deterministic structured Mealy au-
tomata with non-deterministic synchronous composition.

Proof. We present two compatible deterministic structured Mealy automata
with a non-deterministic composition.

Consider P1 = ({0, 1}, {}, {x}, {y}, ε, δ1), where δ1(q) = {{y �→ q(x)}},
and P2 = ({0, 1}, {}, {y}, {x}, ε, δ2), where δ2(q) = {{x �→ q(y)}}. Then the
transition function δ of P1||P2 is defined by δ(ε) = {{x �→ u, y �→ u}|u ∈ U},
which has two elements.

Note that by replacing δ2 in the proof above by δ2(q) = {{x �→ 1 − q(y)}},
a δ would result which is empty, i.e., the composition of the two automata is
inconsistent.

Corollary 9.2.1. The class of deterministic structured Mealy automata is
not closed with respect to synchronous composition.

This means that we need a more restrictive compatibility criterion in order
to ensure that the synchronous composition of deterministic structured Mealy
automata is deterministic. In order to define such a criterion, we need the

88 9. The Synchronous Approach to Concurrency

concept of independence of some output locations from some input locations
in a transition function δ. We will, from now on, focus on Mealy automata:

Definition 9.2.4. For a deterministic structured Mealy automaton P , we
say that location lO ∈ P.LO depends on location lI ∈ P.LI in state
q ∈ P.A if

∃i, i′ ∈ UP.LI

:
∀(l ∈ P.LI − {lI}) : i(l) = i′(l)

∧ ε(P.δ(q[i]))(lO) �= ε(P.δ(q[i′]))(lO)

If there exists some state q so that location lO ∈ P.LO depends on location
lI ∈ P.LI in state q, we simply say that lO depends on lI .

The first conjunct ensures that the input value combinations i and i′ differ
at most at location lI , and the second conjunct ensures that the difference
at location lI between i and i′ leads to a difference between the values of lO

in the two resulting states. Note that the selection function ε yields the only
element of P.δ(q[i]) rsp. P.δ(q[i′]), because we only consider deterministic I/O
automata.

Dependency of lO on lI in state q means that there are values for the
input locations in which the value of the output location lO depends on the
input lI . Independence means that in order to compute the value of lO, the
value of lI does not have to be known.

Definition 9.2.5. Let P = (U, LQ, LI , LO, A0, δ) be a deterministic struc-
tured Mealy automaton. The dependence relation between input locations and
output locations defines, for each q ∈ A, a partial order ≤q on LI ∪ LO, by
defining l ≤ l′ if l′ depends on l in state q or l′ = l.

This partial order is called the state-relative I/O dependency rela-
tion of P .

The union of the ≤q for all states q is a partial order ≤ so that lI ≤ lO

expresses that there exists a state in which lO depends on lI.
This relation is called the I/O dependency relation of P , since it is

not relative to some state.

If two automata are combined, some output locations of one automaton
are typically identical to some input locations of the other automaton. If the
transitive hull of the union of the partial orders of the single automata is
not a partial order, then there is a dependency cycle between some locations
which might lead to problems. The concept of “causal compatibility”between
deterministic structured Mealy automata encapsulates the idea that if no
dependency cycles are generated by a combination of the two dependency
relations, the resulting automaton is deterministic again.

Definition 9.2.6. Two deterministic structured Mealy automata are called
causally compatible if they are compatible and the transitive hull of the
union of the I/O dependency relations is a partial order.

9.2 Composing I/O Automata 89

Note that in order to exclude dependency cycles in the synchronous composi-
tion, it would have been enough to require that for any commonly reachable
pair of states q1 ∈ P1.A and q2 ∈ P2.A, the state-relative I/O dependency
relations of P1 and P2 fit together.

Proposition 9.2.2. The synchronous composition of two causally compati-
ble deterministic structured Mealy automata is deterministic.

Proof. Let P be the composition of two causally compatible deterministic
structured Mealy automata P1 and P2. Assume that q ∈ P.A and i ∈ P.LI →
P.U. We have to prove that q′ ∈ P.A and o ∈ P.LO → P.U with q′[o] ∈
P.δ(q[i]) exist and are unambiguously determined. We (1) prove that values
of locations in P.LO are unambiguously determined, and (2) we deal with
values of locations in P.LQ.

(1) The causal compatibility of P1 and P2 implies the existence of a partial
order on the interface locations of the component automata, i.e., of P1.L

I ∪
P1.L

O ∪ P2.L
I ∪ P2.L

O, which is equal to P.LI ∪ P.LO , induced by the I/O
dependency relations of the components. The idea is to compute the values of
the interface locations of the component automata in the order of the partial
order. Since the automata are Mealy automata, each location has only a finite
number of predecessors. Smaller values in the partial order do not depend
on larger ones. This means that also the value of an output location of an
automaton can be determined for which there exist input signals with not
yet known values.

Consider a location l in the partial order so that the values q′[o](l′) of all
locations l′ ∈ P.LI∪P.LO smaller than l in the partial order have already been
determined. Then the value of q′[o](l) does not depend on as yet unknown
values: q is given, and the values of predecessors or l are given. By induction,
this defines unambiguously the values of all elements of the partial order in
q′[o], which is a superset of P.LO .

(2) Consider a location l ∈ P.LQ. By definition of synchronous compo-
sition, l is a state location of either P1 or P2, and the value of l in q′[o] is
equal to some corresponding value in P1 or P2. Since both P1 and P2 are
deterministic, and by (1), also all values of input locations to both P1 and P2

are determined unambiguously, also q′[o](l) is determined unambiguously.

Note that the proof just given also hints to possibilities of implementing
the synchronous composition of causally compatible Mealy automata, either
partly in parallel (by concurrent evaluation of values of locations which do
not depend on each other) or sequentially (by using some linearization of the
partial order of the composition).

In different formalisms for the description of synchronous systems, a prob-
lem can occur which Halbwachs [Hal93] calls a “causality” problem. In the
framework just described, non-causal synchronous systems can occur by com-
bining modules which are not causally compatible. In practice, non-causality
is sometimes detected by the compiler, but it might also simply lead to the

90 9. The Synchronous Approach to Concurrency

non-termination of the computation of some step of the Mealy automaton in
the operational model (e.g., in hardware description languages, simulation of
a system with a feedback from the output of an inverter into its input might
lead to an infinite non-stabilizing sequence of steps, each toggling the value
of the inverter).

9.3 Micro-steps of Synchronous Systems as ASMs

Like interleaving systems, also synchronous systems can be described by a
finite set of guarded assignments. In an interleaving-based system, only one
of the enabled rules is selected and executed, which might disable rules which
were enabled before. Thus, a rule which is enabled in some state is not guar-
anteed to be executed.

The abstraction level of these simple steps is lower than that of Mealy
automata considered earlier. On this lower abstraction level, the execution
policy of the rules of a synchronous system can be described like this: A rule
is executed once for each moment in which it is enabled. Intuitively,
this means that each rule R “notices” instantly if its guard is true: if once
enabled, the execution of R can not be preempted by another rule which gets
a chance to be executed earlier and which might disable R by its execution.

This execution policy is logically independent from the synchrony hy-
pothesis. The Mealy machine and the synchrony hypothesis describe how a
synchronous system interacts with its environment, and the execution policy
describes how a synchronous system is implemented by micro-steps.

There are several strategies to implement this idea. We will give a rule
implementing one micro-step for each strategy. In order to describe these
rules we assume that Rules is the finite set of rules which define together the
synchronous system. We assume that the state of the synchronous system
is represented by the interpretation of a dynamic unary symbol mem, which
maps the locations of the synchronous system (which we characterize by an
effective static unary predicate symbol L) to the universe of the synchronous
system (which we characterize by a static unary predicate symbol U). Typical
strategies for defining the micro-step semantics of synchronous languages are
the following:

– All enabled rules are executed synchronously in parallel; an ASM rule
describing a micro-step of this approach is the following:

||R∈Rules R

The indexed || abbreviates a synchronous execution of the finite set of
rules from Rules. Each rule has the form

IF <guard>
THEN mem(l1):=tl1||. . .||mem(ln):=tln
ELSE SKIP

9.3 Micro-steps of Synchronous Systems as ASMs 91

The <guard> must evaluate to a Boolean, li are locations of the syn-
chronous system to be updated by this rule, and tli are the terms denoting
the values to be assigned to the locations.
This strategy leads to a completely deterministic system, which is typically
wanted in the description of synchronous systems. The rule can only be
used if the system of rules is conflict free, i.e., any two different rules by
which a common location may be updated must have contradictory guards.
Some formalisms for synchronous systems require that the semantics of
described systems be conflict-free in exactly this sense, but others do not
require this and have thus to describe a semantics which can deal with
conflicts in concurrently enabled rules. The other two strategies we give
describe semantics which can deal with such conflicts.

– The enabled rules are not executed immediately, but they are scheduled
for future execution, which is done in an interleaving manner. We as-
sume that the ASM provides in its universe a subset of updates, which are
constructed by a static 3-ary function update taking as arguments (1) a
location of the synchronous system, (2) an element of the universe of the
synchronous system, and (3) a point in time at which it should be per-
formed. Three static unary accessor functions location, value and time
are defined on updates which yield the respective components of the argu-
ment update. Finally, we use an effective dynamic unary predicate Sched-
uledUpdates to characterize those updates which have been scheduled and
not yet executed. These updates are performed in an interleaving fashion
as soon as their time has come. The strategy is described by the ASM
rule in Fig. 9.1, in which the scheduler rule, which executes nondetermin-
istically one of the updates scheduled for the current time, is executed in
parallel with the rules which schedule some updates for execution at some
point in time. As a variant, the THEN branch may contain several update

|| IF (∃(u:ScheduledUpdates): time(u) <= now) THEN
CHOOSE(u:ScheduledUpdates): time(u) <= now IN
|| mem(location(u)) := value(u)
|| ScheduledUpdates(u) := false

ELSE SKIP
|| (||R∈Rules R)

Rules R are of the form

IF <guard> THEN
ScheduledUpdates(update(<loc>,<val>,<time>)) := true

ELSE SKIP

where <loc>, <val>, <time> are terms evaluating to the location, the value and
the time of the update.

Fig. 9.1. A synchronous system scheduler managing a set of scheduled updates in
an interleaving fashion.

92 9. The Synchronous Approach to Concurrency

constructions, to be performed in parallel. Care must be taken that each
scheduled update is generated just once during a synchronous execution.
Note that the interleaved execution might introduce nondeterminism if
conflicting updates are generated for some point in time.
An execution model basically like this is found to underly the hardware
description languages of the family of synchronous formalisms.

– A common variant allowing the production of inconsistent update sets, but
executing the updates not just one by one, but a maximal consistent set of
updates in each step, i.e., an approach implementing maximal progress
might be taken. We refine the vocabulary and universe of the ASM de-
scribed in the previous strategy by the following additional requirements:
The universe contains also sets of updates (and the vocabulary the binary
static function symbols ∈ and ⊆ with the expected interpretations, to be
used in the definition of the terms of some derived functions; we will not give
the definitions here). A derived static binary predicate on sets of updates
maximalConflictFree(s,t) determines if a set of updates s is a maximal
conflict free subset of the updates which may be scheduled at time t. A de-
rived unary predicate P is true exactly for the subsets of updates for which
ScheduledUpdates is true. The ASM description of the maximal progress
strategy is given in Fig. 9.2. As for the strategy of Fig. 9.1, inconsistent
rules might lead to nondeterminism when the maximal-progress strategy
is used.

|| IF(∃(u:ScheduledUpdates): time(u) <= now) THEN
CHOOSE(s:P): maximalConflictFree(s,now) IN

FORALL(u:s) DO
|| mem(location(u)) := value(u)
|| ScheduledUpdates(u) := false

ELSE SKIP
|| (||R∈Rules R)

The rules R are of the form of the strategy of Fig. 9.1.

Fig. 9.2. A maximal progress scheduler for a synchronous system.

Sometimes, it is convenient to be able to refer to the previous values of a term
in the guard of a rule; for example, the hardware description languages can use
guards involving changes, or, for Boolean terms, edges of a specific direction.
In order to support this in the ASM context, we would use a nullary static
symbol previousl for each location l whose previous we might need, which
is interpreted as yet another location, and execute mem(previousl):=mem(l)
in parallel to the micro-step rule for all such locations l.

9.4 Environment Interaction and the Synchrony Hypothesis 93

9.4 Environment Interaction
and the Synchrony Hypothesis

The synchrony hypothesis is the condition for the synchronous approach to
reactive systems to work. It says that the reactive system works very quickly
in comparison to the environment, or more precisely: that the reaction time
of the reactive system in the computation of the outputs can be ignored.

In order to explore the meaning of this hypothesis, we will describe how
the micro-step semantics and the macro-step semantics (i.e., the Mealy au-
tomaton semantics) of a reactive system are related. A macro-step of the
synchronous system consists of the following phases:

1. The environment waits until the next input has to be processed by the
reactive system.
For the strategies based on timed scheduled updates, the reactive system
must also be re-activated when one of the elements of ScheduledUpdates
might have become enabled because of the flow of time.

2. When the environment decides that a new input has to be processed, the
new input to be processed is filled in. We assume that a subset LI of
the locations of the micro-step ASM is designated as the input locations.
New inputs are provided for these locations by putting these values into
mem(l) for l ∈ LI . Then, the micro-step ASM is activated.

3. Now, the environment waits for the system to terminate its computation.
The synchrony hypothesis is valid if the computation is terminated in
negligible time in relation to the reaction time of the environment.

4. After the reactive system has finished its work, the micro-step ASM is
deactivated and its outputs are fed back from the synchronous system
into the environment. We assume that a subset LO of the locations is
designated as output locations, and the output of the synchronous system
consists of the values of the output locations after the stabilization.

At system start, we can either assume that the environment must wait for
the end of an initialization phase before the first inputs may be provided, or
we can assume that in the first state, the reactive system already waits for
the first set of inputs. We consider this to be just a technical point, and we
assume the second.

We will shortly make precise what it means in the ASM context for a rule
to be activated or dis-activated, and how the environment can recognize if
the computation has finished:

– Activation of a rule R is modelled by a dynamic nullary predicate symbol
activeR, where the rule is used in a context of the form IF activeR THEN
R ELSE SKIP. The rule is active in states in which activeR is true, and
it is inactive if activeR is false.

– Termination of the computation is signaled to the environment by the
synchronous system by the value of a dynamic nullary symbol terminated.
On activation of the rule, the environment updates this symbol to false,
and the system sets it to true when it is ready.

94 9. The Synchronous Approach to Concurrency

With these conventions, the environment rule, to be executed synchronously
with the reactive system, can be described like in Fig. 9.3, where we assume
that the environment starts in state waitingForInput, and the reactive sys-
tem is inactive at the start:

IF (envstate = waitingForInput) ∧ inputAvailable THEN
|| ProvideInput
|| envstate := waitingForResult
|| activeSyncRule := true

|| terminated := false
ELIF (envstate = waitingForOutput) ∧ terminated THEN
|| envstate := waitingForInput
|| activeSyncRule := false

|| TransferOutput
ELSE SKIP

Fig. 9.3. A rule describing the environment of a synchronous system.

envstate is the state of the environment, which is one of waitingForIn-
put and waitingForOutput. inputAvailable is a predicate signaling if an
input is available for the synchronous system. ProvideInput is a rule pro-
viding the input to the synchronous system, SyncRule is the name of the
rule describing the synchronous system, and TransferOutput is a rule for
processing the outputs from the synchronous system.

In the non-standard approach to real-time systems, we can make the syn-
chrony hypothesis more precise: A system fulfills the synchrony hypothesis
if the abstraction is adequate that the computation of any macro-step uses
only infinitesimal time, and that the distances between moments at which
the environment provides inputs are appreciable. Under this interpretation
of the synchrony hypothesis, any limited number of micro-steps may be used
to compute a macro-step. An unlimited number of micro-steps would imply
unlimited activity of the system.

A consequence of this assumption is that the time stamp of a next sched-
uled assumption should not be in the non-zero infinitesimal future: it should
either be in the appreciable future, or it should be the current moment.

9.5 Synchronous NTASM Models

We propose a very basic model of synchronous concurrent systems by asso-
ciating a rule with each concurrent agent and executing them synchronously.
For this, we have to require that the rules associated with the agents are
compatible, i.e., there is no resolution of the nondeterminism so that differ-
ent synchronously executed rules update the same location:

9.6 Summary 95

Definition 9.5.1. A synchronous NTASM model of a concurrent sys-
tem consists of

– A set of (sequentially executing) agents, represented by an effective set.
We characterize agents by the unary predicate symbol Agent. The agent set
may be static or dynamic. The latter case allows us to model that agents
are generated or destroyed in the course of a computation.

– A finite static set of rule identifiers. Each rule identifier r is associated
with a rule, which we denote by Rr.

– A mapping from agents to rule identifiers. We use a unary function rule
from agents to rule identifiers to represent this mapping. The rules must be
compatible in each state, i.e., there must be no resolution of the nondeter-
minism in the rules so that two rules update the same location in the same
state.

The following rule scheme describes a synchronous scheduler.

Definition 9.5.2. A synchronous NTASM model scheduler is a rule
of the following form:

|| now := now + dt
|| FORALL (a:Agent) DO

|| IF rule(a)=r1 THEN Rr1 ELSE SKIP
|| ...
|| IF rule(a)=rn THEN Rrn ELSE SKIP

The set of system behaviors of a synchronous NTASM model defined thus:

Definition 9.5.3. An infinite sequence σ of states is a run of a synchronous
NTASM model if each step of σ is a step of the same synchronous NTASM
model scheduler.

The list of ||-prefixed rules inside the FORALL rule has one line for each rule
identifier ri and associated Rule Rri . Note that as in the interleaving NTASM
model, each rule Rri might contain occurrences of the unbound variable a,
which it can use to refer to the agent for which it works.

9.6 Summary

This chapter describes a way to model reactive systems based on the syn-
chronous composition of subsystems rather than on interleaving composition.
We explain the approach by describing a system as a Mealy automaton and
explain why in order to compose systems, more structure is necessary than
there is explicit in Mealy automata descriptions. We define the concepts of
compatibility and causal compatibility of Mealy automata, which are needed
to understand the needs of the composition operation. Finally, we describe
three strategies of implementing micro-step semantics of synchronous systems
based on ASMs, and we describe how the interaction with the environment
might be modelled.

10. Deadlines

A concept which is often used in models of real-time systems is the deadline.
A deadline is a point in time associated with an event so that the event must
take place in a system run, and it must not take place after the deadline.
This section will discuss how deadlines might be modelled in NTASMs.

The deadline concept is related to the concept of urgency of an event. An
event is urgent at some point in time when its deadline has come, i.e., when
no more time may pass until the event takes place.

In several formalisms, two points in time are associated with an event. In
addition to the deadline, there is an enabling time. The enabling time is a
point in time so that before that point in time, the event does not take place.
Since we model standard systems, it is no restriction to assume that both the
enabling time and the deadline are standard. For a fixed event, let us denote
by e the enabling time and by d the deadline. In general, each of the times
might be understood as strict or as non-strict, i.e., that the intervals (e, d),
(e, d], [e, d) or [e, d] might describe the time during which the event must
take place. We will restrict our investigation to non-strict enabling times and
deadlines. We call the interval during which an event is required to take place
the execution interval of the event. In order to make the event description
non-contradictory, we assume additionally that the execution interval of an
event is not empty. If the execution interval is a point interval, this models
that there is exactly one moment at which the event might take place. And
if e < d, there is an interval with strictly positive length during which the
event is required to take place.

Deadlines and enabling times are typically used in the assumptions of
a system specification: They restrict nondeterminism similarly to fairness
restrictions in concurrent systems modelled in an interleaving fashion.

We will model each event by an agent. This concept is used in Defini-
tions 8.4.2 and 9.5.2 for modelling concurrency. Since agents can be created
and destroyed, for the execution of an event it is also relevant when the agent
associated with the event is created. We simply assume that the enabling
time of an event is not earlier than the creation time of the associated agent.
By this assumption, we do not have to consider the creation time of the agent
when we investigate when an event can take place: only enabling time and
deadline matter.

In formalisms in which during a discrete step of the system, no time is
assumed to pass, deadlines can be modelled in the following way: as long as at

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_10,
© Springer-Verlag Berlin Heidelberg 2005

98 10. Deadlines

least one event is urgent, only discrete transitions can take place, executing
the urgent transitions or disabling them. Otherwise, the system might do a
time step whose length is so small that no strict deadline of any event is
reached, and no non-strict deadline of any event is transgressed.

There are two reasons why this simple strategy does not work in NTASM
systems in general: (1) In each step, also when a discrete step takes place, a
non-zero amount of time passes. (2) If the execution interval of some event is
a point interval, the use of a constant step width implies that the execution
interval does not intersect the time domain if the point is not an integer
multiple of the step width.

In this section, we describe several ways to model deadlines in the NTASM
context under different conditions. We use the convention that an event
is modelled by an agent a. Thus, we will talk about the enabling time of
a, the deadline of a or about urgency of a, always transferring the con-
cepts from an event to the agent modelling the event. For an agent a,
enablingTime(a) and deadline(a) denote the enabling time and the dead-
line of a. By performEvent(a), we denote a rule which describes the ef-
fect of performing the event associated with agent a. Since agent a models
only a single event, it is assumed that one of the effects of the execution of
performEvent(a) is the destruction of agent a.

10.1 Synchronous NTASM Systems

We have the most simple case if the system is a synchronous NTASM, the
enabling times and deadlines lie at standard rational numbers, and the in-
finitesimal time step dt divides all standard rational numbers. This case is
especially easily dealt with because we can tune the step width to the enabling
times and deadlines.

Lemma 10.1.1. There is a non-zero rational infinitesimal dt such that for
any standard rational number q, q

dt is an integer.

Proof. This follows from the idealization axiom: For any standard finite set
{m1

n1
, . . . , mk

nk
} of rational numbers (the mi are all integers, the ni are all non-

zero integers), a rational number dividing them all is 1∏
1≤i≤k

ni
. A number

dt dividing all standard rational numbers must necessarily be infinitesimal,
since (by contradiction) if it were not, it would be standard, and then it would
not divide the standard rational number dt/2.

Since NTASMs use a discrete time domain with equidistant points and
infinitesimal steps, it is important that we can find a step width which touches
each standard rational number:

Corollary 10.1.1. There is an infinitesimal dt so that T = {n∗dt : n ∈ N0}
contains each non-negative standard rational number.

The corollary does not hold for standard real numbers:

10.1 Synchronous NTASM Systems 99

Proposition 10.1.1. There are two standard real numbers a and b so that
no number divides both without rest.

Proof. Just take a = 1 and b =
√

2.

Corollary 10.1.2. No infinitesimal divides all standard real numbers with-
out rest.

A rule R(a) defining the activity of an agent a with enabling time and
deadline might be given as in Fig. 10.1.

IF enablingTime(a) ≤ now
THEN IF now+dt ≤ deadline(a)

THEN OR SKIP
OR performEvent(a)

ELSE performEvent(a)
ELSE SKIP

Fig. 10.1. Form of a rule in a synchronous NTASM model with enabling times and
deadlines.

The outermost IF ensures that before the enabling time has come, the
effect of the rule is equivalent to SKIP, i.e., that the rule has no effect, but
does not interfere with any synchronously executed rules. The inner IF checks
whether execution of the event can wait. This is the case if at the next point
in time, i.e., at now+dt, the deadline condition has not yet been violated. In
this case, the event might either take place, or it might wait. Otherwise the
current moment is the last one at which the event might take place, i.e., a has
become urgent, and the ELSE branch of the inner IF ensures that the event
in fact takes place.

Since we consider rules of a synchronous NTASM model as presented in
Chap. 9.5, it is ensured that the different instances of performEvent(a) in
synchronously executed rules are pairwise compatible. Thus, no synchroniza-
tion is necessary between concurrent agents whose deadlines run out at the
same point in time.

Under the conditions described, the rule of Fig. 10.1 will not miss a dead-
line:

Theorem 10.1.1. Consider a rule R(a) of the form of Fig. 10.1. Assume
that

(1) rule R(a) is executed by a synchronous NTASM model scheduler,
(2) both enablingTime(a) and deadline(a) are standard numbers,
(3) the constant step width dt divides deadline(a),
(4) the execution interval is non-empty,
(5) the agent a is created before its deadline has run out, and
(6) the agent a is destroyed only by the rule performEvent(a), which only

occurs in R(a).

100 10. Deadlines

These assumption given, it is ensured that rule performEvent(a) is taken
at a time during the execution interval of the event, i.e., at a state with
enablingTime(a)≤now≤deadline(a).
Proof. We proceed in two steps. First we show (A) that if the execution
interval (an interval of R

+
0) and the interval I of T which starts with the first

moment at which a exists and which extends to infinity have a non-empty
intersection, performEvent(a) is ensured to be executed, and then we will
prove (B) that the intersection mentioned in the antecedent of (A) is indeed
non-empty.

(A) Assumption (1) ensures that R(a) is taken exactly at the moments
in T at which the agent a exists, i.e., exactly for the times in I up to the
first moment at which performEvent(a) is taken (by assumption (6)). Now
assume that the execution interval and I have a non-empty intersection. Call
this intersection J . Since the execution interval has standard bounds, it is
standard. Since the execution interval is bounded, J has a last element. This
is the time at which a is urgent, if it exists by that time.

a exists from the beginning of I to the first (and only) state in which
performEvent(a) is taken. The outer IF of R(a) (and assumption (6)) ensure
that performEvent(a) is at most taken after the enabling time of a has come,
i.e., there are elements of J where a exists. At any point during J but the
last, the THEN branch of the inner IF of R(a) allows performEvent(a) to be
taken, but does not force this. If performEvent(a) is not taken at one of these
moments, it will be taken at the last moment in J , because of urgency, by
execution of the ELSE branch of the inner IF. In any case, performEvent(a)
is executed.

(B) Assumptions (2) and (4) together imply that the execution interval is
appreciable or a point interval. For appreciable intervals I and an infinitesimal
dt, there is an unlimited number of multiples of dt which lie in I, i.e., I ∩T is
non-empty. For a point interval, assumption (3) implies that the only point
also lies in T. For both cases, assumption (5) ensures that the smallest element
of I does not violate the deadline condition, and since all elements greater
than that belong to I and I ⊆ T, it follows that the intersection of I and the
execution interval is non-empty.

Let us discuss the practical relevance of the assumptions ofTheorem 10.1.1.
Many systems are more easily modelled as interleaving systems than as syn-
chronous systems, which means that assumption (1) can be a real restriction.
Since we deal with modelling standard systems, assumption (2) will typically
be fulfilled. Applications of real-time systems do seldom use the abstrac-
tion that time is Dedekind-complete like the real numbers, which means that
the restriction to rational enabling times and deadlines is also typically no
restriction in practice, which allows fulfillment of assumption (3), by Corol-
lary 10.1.1, quite easily. Non-fulfillment of assumptions (4) or (5) leads to
systems in which the deadline has no function, and assumption (6) does not

10.2 Interleaving NTASM Systems 101

have to be a real restriction if destruction of a by another rule is modelled as
setting some flag which leads performEvent(a) to do nothing but destroy a.

Altogether, we conclude that in synchronous NTASM models, deadlines
can in general be operationalized quite directly, as described by the rule in
Fig. 10.1 and made precise by Theorem 10.1.1. Interleaving NTASM models
need more consideration.

10.2 Interleaving NTASM Systems

If some processes of a concurrent system update the same locations without
using an explicit access protocol, the system is most easily modelled in an
interleaving manner, because this implies the existence of an implicit access
protocol. Sect. 8.4 presented a simple scheduler for an interleaving system.
In the definition of that section, the nondeterminism induced by the choice
between SKIP and the enabled rules is only restricted by the fairness require-
ments. For dealing with deadlines operationally, the interleaving approach
presents the main problem that several agents might become urgent at the
same time, but only one of them can be taken at that time.

A simple solution to this problem is to deal with deadlines as with fairness:
declaratively, by considering only runs in which the formula

∀(a : Agent) : deadline(a) �=⊥→ now ≤ deadline(a)

is invariantly true. This formula assumes that deadline(a) =⊥ encodes that
there is no deadline for agent a.

The problem with declarative requirements is typically to show that they
are not contradictory. Thus, we have to find conditions under which there
exists a resolution of the nondeterminism of an interleaving NTASM model
scheduler as described in Definition 8.4.2 so that each event can take place
before its deadline runs out. In the case at hand, sufficient conditions on the
enabling times and deadlines of the agents have to be found which ensure
that the deadlines can be observed by the system, similar to the synchronous
case dealt with above.

The main idea is to ensure that for each time interval of a run of the
system, there are at most as many events which have to take place in that
interval as there are steps in that interval. In that case, each event to be
performed can also be performed.

The main conditions which we use are limited activity and relaxed punc-
tuality:

Theorem 10.2.1. Consider an interleaving NTASM model. Each agent a
might, on its creation, be associated with an enabling time enablingTime(a)
and a deadline deadline(a), which obey the following conditions:

(1) The agent a is created not later than its enabling time.
(2) Both enablingTime(a) and deadline(a) are standard numbers.
(3) The execution interval is non-empty and is not a point interval.

102 10. Deadlines

The agent fulfills the following conditions:

(4) At each moment during the execution interval of a, the rule Rrule(a) is
the only rule which, if executed, would execute rule performEvent(a).

(5) The agent a is destroyed only by the rule performEvent(a).

Under these conditions, and if (6) the system admits runs of limited activity,
there is a run of the interleaving NTASM model which obeys the deadline
conditions, i.e., in which each agent associated with a deadline can do its
work before its deadline has expired.

Proof. Because of condition (1), enabling time and deadline are the bounds of
the interval in which the event must take place, i.e., we can ignore the creation
time. Conditions (4) and (5) imply that the agent remains in existence until
its associated rule Rrule(a) is scheduled for execution. Condition (6) and
the definition of limited activity imply that there is a run so that in each
interval of limited length, only a limited number of non-SKIP transitions take
place. Consider such a run, and consider an agent a which is associated with
a deadline. Since the bounds of the execution interval are standard (2), the
execution interval is of limited time length. By limited activity, this implies
that the agents different from a only do a limited number of steps in that
interval. By (3) and infinitesimality of the step width, the execution interval
contains an unlimited number of steps. Note that strictness or non-strictness
of enabling time or deadline make no difference. Thus, there is room enough
for a to do its only step in the execution interval, since only a limited number
of the unlimited number of steps is used by agents other than a: The scheduler
of an interleaving NTASM model can resolve its nondeterminism so that
deadlines are obeyed.

Let us discuss the practical relevance also of the precondition in this
theorem. Condition (1) has a technical character, and condition (2) is no
real restriction if standard systems are modelled. The second conjunct of (3)
might be inconvenient: punctuality of a deadline is a convenient abstraction
in many cases. We could allow punctual deadlines if we required that at most
one event would be allowed to be punctual for a given point in time, and that
such a punctual deadline would be placed at a rational point in time and
using an infinitesimal step width touching each standard rational, similar to
the strategy chosen for expressing deadlines in synchronous NTASM mod-
els. But this would induce inconvenient interdependencies in processes to be
executed in an interleaving fashion: Their set of potential punctual deadline
times would have to be disjoint. Conditions (4) and (5) have merely technical
character, and condition (6) is a natural assumption for implementable sys-
tems, as already discussed. Thus, the only real inconvenience is the second
conjunction of (3), i.e., the requirement of non-punctuality.

10.3 Admitting Infinitesimal Delays 103

10.3 Admitting Infinitesimal Delays

The two sections above investigate sufficient conditions so that in an NTASM
system, enabling times and deadlines can be modelled faithfully. As has been
demonstrated, one condition might be rather inconvenient. This condition
might be weakened if a more liberal interpretation of the runs of NTASM
systems is assumed.

The idea can be presented by a distinction between simulation time and
real time. As before, the real time at a moment is the value of a dynamic
nonstandard symbol now which starts as 0 and is incremented by the same
infinitesimal dt in each step. The simulation time is the value of a dynamic
nonstandard symbol simNow which also starts as 0, and which is incremented
in a similar but different way than now. Consider the following idea:

– Deadlines and enabling times of agents are interpreted with respect to
simulation time, not with respect to real time.

– The scheduler updates simNow, the simulation time, in the following way:
– In a step in which a discrete transition takes place, simNow is not changed.

This implies that the simulation time does not change in a step when an
agent is urgent.

– In a step in which no discrete transitions take place, simNow is incre-
mented at most by dt, in the following way:
If strictly between simNow and simNow+dt, there is a deadline t of some
agent, set simNow to t, otherwise set it to simNow+dt.
This means that simNow is incremented by dt, or in the next state, there
is an urgent transition.

Using this strategy, we do not have to assume very sharp restrictions on
enabling times and deadlines. Punctual deadlines will be obeyed no matter
what the time step dt is, and no matter if the deadline times are rational or
not, but only with respect to simNow, not with respect to real time. Because
of this, the relation between simulation time and real time is important.

Let us look at the runs which are generated by this strategy. The simu-
lation time will always be smaller than or equal to the real time, i.e., sim-
Now<=now is an invariant of the system. This implies that an event which
obeys its deadline with respect to simNow might be too late by the amount
of now-simNow with respect to the real time.

The main observation is that for runs with limited activity, it is ensured
that for moments with limited value of now, now-simNow is an infinitesimal,
i.e., for such systems and moments, the moment at which an event takes place
is at most an infinitesimal too late.

Figures 10.2 and 10.3 show an interleaving scheduler for systems with
deadlines implementing the idea. We restrict ourselves to non-strict enabling
times and deadlines.

Rule infinitesimalDelayScheduler is the scheduler: now is incremented
invariably by dt. If an agent is urgent, a discrete step is done; otherwise,

104 10. Deadlines

if there is an executable agent, the scheduler selects nondeterministically
between a discrete step or a time step. If no agent is executable, a time step
is done.

An agent is urgent in a state if the deadline is currently reached. The ex-
ecutability of an agent depends on enabling time and deadline. A discrete
step is performed by selecting an executable agent, removing it from the set
of agents, executing it, and ensuring that the simulation time stays the same.
A time step is performed by either stepping with simNow to the next dead-
line, or by stepping to simNow+dt, whichever is earlier. Note that the set of
deadlines from which the minimum is determined is, for standard deadlines
and infinitesimal dt, a singleton. The nullary dynamic function lastSched-
uledAgent yields the agent which has been scheduled in the last step, or ⊥ if
the last step was a time step, or if there was no last step, i.e., it is initialized
with ⊥. Since agents are used just for one event, no agent occurs more than
once as value of lastScheduledAgent in a run.

Theorem 10.3.1. Any run of infinitesimalDelayScheduler which is
started from a situation in which both now and simNow are zero fulfills the
following properties:

(1) now is never smaller than simNow:

[simNow ≤ now]

(2) If in limited time, only a limited number of discrete steps are performed,
the difference between simulated and real time is infinitesimal for limited
real times:

�(limited(dt ∗ �) → limited(#(lastScheduledAgent �=⊥)))
→
[limited(now) → infinitesimal(now− simNow)]

(3) The scheduling obeys causal order in the sense that if agent a has a
deadline which is smaller than the enabling time of agent b, then b is
scheduled before a:

∀(a, b : Agent) :
deadline(a) < enablingTime(b)
→
¬�([scheduledAgent = b]; tt; [scheduledAgent= a])

Proof. (1) Use induction on the number of steps: Each step increments now
by dt, and simNow by a value which is between zero and dt.

(2) We proceed in three steps (a), (b) and (c): (a) Consider a run of rule
infinitesimalDelayScheduler and any position i of the run at which now is
limited. The interval between the start of the run and position i is of limited
time length (now is the time length, and is limited), and, thus, by the limited
activity assumption, only a limited number of discrete steps have taken place
up to position i. Let us call this limited number j. (b) By induction, it is clear
that the difference now-simNow at any position k in the run is not larger than

10.3 Admitting Infinitesimal Delays 105

infinitesimalDelayScheduler =def

|| now := now + dt
|| IF ∃(a:Agent):urgent(a)

THEN doDiscreteStep
ELIF ∃(a:Agent):executable(a)
THEN OR doDiscreteStep

OR doTimeStep
ELSE doTimeStep

urgent(a) ⇔def

simNow = deadline(a)

executable(a) ⇔def

∧ enablingTime(a) ≤ simNow
∧ simNow ≤ deadline(a)

Fig. 10.2. A scheduler for an interleaving NTASM model admitting infinitesimal
delays; see Fig. 10.3 for definitions of the step rules.

doDiscreteStep =def

CHOOSE (a:Agent):executable(a) IN
|| simNow := simNow
|| lastScheduledAgent := a
|| Agent(a) := false
|| OR IF rule(a)=r1 THEN Rr1 ELSE HALT

OR ...
OR IF rule(a)=rn THEN Rrn ELSE HALT

doTimeStep =def

|| lastScheduledAgent := ⊥
|| IF (∃(a:Agent):deadline(a)<simNow+dt) THEN

simNow := min {t | ∃(a:Agent):t=deadline(a)<simNow+dt}
ELSE
simNow := simNow+dt

Fig. 10.3. The step rules used in the scheduler of Fig. 10.2.

dt times the number of discrete steps which have taken place up to position
k. (c) We put (a) and (b) together: For a limited j and an infinitesimal dt,
j ∗ dt is infinitesimal, which is an upper bound for the value of now-simNow
by (b).

(3) Since enabling times and deadlines of events are compared to simNow,
and simNow increases in a (weakly) monotone way, agent b will not be enabled
before the deadline of agent a has passed.

The fact that there is only an infinitesimal difference between the time
when an event takes place and the time when it should take place and the
fact that we only consider strict enabling times and deadlines implies that the

106 10. Deadlines

standard part of the time at which an event takes place fulfills the enabledness
conditions:

Corollary 10.3.1. Consider a run as in the precondition of Theorem 10.3.1.
If the discrete step of an event agent takes place at a state with a limited value
of now, the standard part of now is an element of the execution interval.

Note that the result only holds for the standard part. now itself might be an
infinitesimal too large.

10.4 Summary

Deadlines are an important modelling technique in quantitatively timed sys-
tems. In this chapter, we discuss two strategies for modelling deadlines in a
system description: they can be dealt with declaratively, in which case a
consistency argument is necessary, or they can be dealt with operationally,
i.e., it can be built into the scheduler that deadlines have to be obeyed. Syn-
chronous systems and interleaving systems pose different requirements on the
way in which deadlines are expressed, where interleaving systems are more
difficultly dealt with. One can choose a fairly simple approach if execution
intervals are non-punctual. A more complicated approach is necessary if the
timed algorithm admits punctual execution intervals; we present a method
which is based on an infinitesimal difference between “real time” and “simu-
lation time”.

11. Open Systems

An application is modelled as an open system if the environment is not ex-
pressed explicitly in the model. Open systems are the paradigmatic case of
reactive systems.

11.1 Receptivity Simplified

An important property of open systems is receptivity. In classical real-time
formalisms, it is modelled as the possibility that time can become larger than
any value, or put otherwise: That Zeno behavior can be avoided, even in
adversarial environments.

If we just require a system to be non-Zeno, i.e., to admit that time di-
verges from any state, it is not ensured that a composition of two such systems
is also non-Zeno, since the composition of two non-Zeno systems might be
Zeno. The point is that for open systems, it is necessary to distinguish pos-
sible nondeterminism in the environment E and in the system S. While the
nondeterminism in S is typically understood to be controlled, i.e., it is used to
model freedom of behavior, the nondeterminism in E is typically understood
to model missing knowledge about the environment, and is not understood
to be controllable by the system. These two kinds of nondeterminism might
be called “existential” and “universal” nondeterminism: There must exist a
resolution of the controlled nondeterminism so that for all alternatives of
the non-controlled nondeterminism, the specification is fulfilled. In order to
ensure that S fulfills some specification, it can be assumed that the resolu-
tion of its internal nondeterminism can be controlled, while the resolution
of the external nondeterminism, i.e., that of E, can only be reacted upon.
This means that it is not enough that there exists a possible behavior of
the combined system S||E so that time increases indefinitely; rather, there
should exist a resolution of the system nondeterminism for each resolution
of the environment nondeterminism so that time diverges, or possibly not if
the environment can be blamed for the Zeno behavior of a resulting run.

A consequence of this is that receptivity of real-time systems can be for-
malized as a game between a system S and its environment E, in the following
way [AH97]: In each step, S and E propose a move to some arbiter A. The
arbiter charges the step to the component proposing the shorter move. In

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_11,
© Springer-Verlag Berlin Heidelberg 2005

108 11. Open Systems

case of a tie, S is charged. A discrete move has length 0, a time move can
have any non-negative length. If both S and E propose a discrete move, the
arbiter performs their moves synchronously; if one proposes a time move and
the other a discrete move, the arbiter just performs the discrete move; and
if both components propose a time move, the arbiter performs a time move
of a length which is the minimum of the lengths of the proposed moves. The
goal of S is to let time increase for time 1, or to get charged only for a finite
number of steps; the goal of the environment is the opposite. S is receptive if
there is a strategy for S to win this game from every reachable state.

Note that this game-theoretical conceptualization expresses exactly the
difference between the existential quantification of the non-determinism of
the system and the universal quantification of the non-determinism of its
environment.

Let us transfer the ideas to the NTASM framework. We assume that the
whole system is composed synchronously from two rules RS and RE , where
RE includes the effect of the time rule, i.e., the whole system is modelled by
a rule RS ||RE .

The “proposal” of some step in the classical framework is replaced just
by the execution of an action, which might be equivalent to SKIP to model
the “proposal” of an infinitesimal time step. The proposal of a discrete step
is replaced by the execution of a step which is not equivalent to SKIP; and
the proposal of a time step of some length is expressed by a sequence of
infinitesimal time steps the lengths of which sum up to the proposed length.
The number of moves charged to RS in some interval is then simply the
number of non-SKIP steps performed by RS in the interval.

This approach means that we assume that the “strategy” the existence
of which the classical game-theoretical definition requires for receptivity is
already assumed to be implemented in the rule. If we want to use non-
determinism of the system rule to model freedom of implementation, it should
not be restricted by a receptivity requirement. Interpreting nondeterminism
in a rule in this way, we have to require that each resolution of the non-
determinism of RS leads to an admissible system behavior.

Using these ideas, and replacing the finiteness requirement of the classi-
cal formulation by a limitedness requirement in the NTASM framework, we
define:

Definition 11.1.1. A rule RS is receptive if in any limited span of time
of any system behavior of some RS ||RE , where RE includes the effect of a
time rule, RS is taken only a limited number of times non-vacuously; or as
a formula:

[takenAlone(RS ||RE)]
→
�(limited(dt ∗ �) → limited(# takenNonvacuously(RS)))

11.2 (m,n)-Receptivity 109

Note that the receptivity definition has become far simpler than in the
classical game-theoretical formulation. This can be traced back to one prop-
erty of the NTASM framework and one interpretational decision:

– The uniform model of time makes it unnecessary to treat discrete steps
and time steps of different lengths differently. The arbiter of the classical
definition is not necessary any more.

– The decision to interpret the nondeterminism of the system as freedom of
implementation which should not be restricted by the receptivity require-
ments obviates the need to distinguish between existential and universal
occurrences of nondeterminism.

The most important consequence of the receptivity definition is that syn-
chronous composition of two receptive rules yields a receptive rule:

Proposition 11.1.1. Let R1 and R2 be compatible receptive rules. Then also
R1||R2 is a receptive rule.

Proof. No matter what the environment of R1 does: in a limited interval of
time, R1 is taken non-vacuously only a limited number of times. The same
is true for R2. The number of non-vacuous steps of R1||R2 in an interval is
bounded from above by the sum of the non-vacuous steps of R1 and R2 in the
interval. The sum of two limited numbers is limited, and a natural number
bounded by a limited number is limited; thus, also R1||R2 performs only a
limited number of non-vacuous steps in a limited interval.

11.2 (m,n)-Receptivity

The receptivity concept described in Definition 11.1.1 is a strict requirement
on a receptive rule: No matter how wildly the environment acts, a receptive
rule must behave orderly. In specifications of open systems which use the
assume/guarantee scheme [FP78, AL95], a system may start to behave dis-
orderly if its environment previously started to do so. Thus, the system is
not required to behave orderly under all conditions: The exception is if the
environment can be blamed for the disorder of the system behavior.

In order for this freedom to be usable, the system must be able to notice
if the assumptions are fulfilled by the environment. In the formalism used by
Abadi and Lamport [AL95], this can be expressed by looking at the safety
part of the assumption: remember that a safety property is defined so that
if it is not fulfilled by a system behavior, then there is a first moment at
which this can be noticed. The liveness part of the assumption can not be
used, since a liveness property is one which can always be fulfilled by some
future behavior, no matter what has happened up to now, i.e., the system
can not decide, based on the finite prefix of a system behavior known up to
some moment, if the environment will fulfill the liveness assumption or not.
Because of this, Abadi and Lamport use the safety closure of the assumption
as the effective assumption in an assumption/guarantee paradigm.

110 11. Open Systems

While each classical property can be defined as conjunction of a safety
property and a liveness property, as proved by Alpern and Schneider [AS85],
for non-classical “properties” (which are not necessarily properties, in the
sense that non-classical predicates on system behaviors do not necessarily
define sets of system behaviors) this is not necessarily true; more specifically,
the property that a rule shows unlimited activity in a system behavior is
not a safety property (there is no first moment at which it is clear that the
condition can not be fulfilled: If there was unlimited activity of rule R in a
prefix of a system behavior up to position n, then this was already true at
position n − 1), even though it is equal to its safety closure (if in each finite
prefix of a system behavior, rule R shows only limited activity, then this is
also true in the whole system behavior).

Thus, we can not use the safety closure of the assumption on the envi-
ronment to decide when the system is not bound any more to its guarantee,
since there is no first moment at which the system can detect that the envi-
ronment does not hold its promise of limited activity. Thus, in order to use
the extra freedom which is allowed by an assumption/guarantee principle,
we will construct a (true) safety property which implies limited activity, but
which is stronger.

The idea which we use is the following: Instead of assuming limited ac-
tivity, we use the stronger assumption of bounded activity in unit intervals
of time. We define bounded activity in the following way:

Definition 11.2.1. We say that a rule R shows bounded activity with
bound n ∈ N0, as formula: ba(R, n), if and only if:

�((dt ∗ � ≤ 1) → (# takenNonvacuously(R) ≤ n))

Bounded activity with a fixed bound is a safety property: in each moment,
it can be checked if rule R has already been taken n times, and if this is the
case, it can be checked if since the earliest of the last n events, more than
one time unit has passed.

Bounded activity might even be a more adequate formalization of a re-
quirement for an implementable system than finite activity: A system which
performs n discrete transitions in each time interval from n to n + 1 (for
n ∈ N0) shows finite activity, but since there is no bound for the number
of discrete transitions in intervals of length 1, such a system is not imple-
mentable. This makes it plausible to use bounded activity with limited bounds
rather than just limited activity as a criterion for implementability. Note the
similarity of the relation between limited activity and activity with limited
bounds for timed systems to the relation between continuity and uniform
continuity in analysis. In both relations, the existence quantifier describing
admissible changes occurs once behind the universal quantifier describing po-
sitions in a system development, allowing the change parameter to depend
on the position, and occurs the second time in front of the universal position
quantifier, requiring that the same change parameter is valid for all positions
considered.

11.2 (m,n)-Receptivity 111

For standard n, bounded activity is a stronger property than limited ac-
tivity:

Proposition 11.2.1. For standard n, ba(R, n) implies la(R).

Proof. In an interval of length l, at most n ∗ �l� non-vacuous R-steps take
place, which is a limited number for limited n and l.

Using the concept of bounded activity, we can define (m, n)-receptivity of
a rule R like this:

Definition 11.2.2. A rule RS is (m, n)-receptive (for some m, n ∈ N0) if
the following formula holds for all rules RE compatible with RS:

� ((takenAlone(RS ||RE) ∧ ba(RE , m)) → ba(RS , n))

The definition implies that an (m, n)-receptive rule may “go wild”, i.e., may
perform more than n discrete steps per unit of time, as soon as its environment
has shown discrete activity which is not bounded by m per unit of time.

A rule which admits more activity from the environment or guarantees a
tighter bound for its own activity fulfills also the less strict conditions:

Proposition 11.2.2. If a rule R is (m, n)-receptive and m′ ≤ m and n ≤ n′,
then R is also (m′, n′)-receptive.

Proof. m′ ≤ m implies that an (m, n)-receptive rule assumes not more than
an (m′, n)-receptive rule about the environment, and n ≤ n′ implies that
an (m, n)-receptive rule guarantees not less than an (m, n′)-receptive rule.
Thus, the concept of (m, n)-receptivity is not weaker than that of (m′, n′)-
receptivity.

We now consider the synchronous composition of two rules R1 and R2:

Proposition 11.2.3. Consider an (m1, n1)-receptive rule R1 and an
(m2, n2)-receptive rule R2, with m1 ≥ n2 and m2 ≥ n1. Then R1||R2 is
(min(m1 − n2, m2 − n1), n1 + n2)-receptive.

Proof. In unit time, R1 will at most perform n1 discrete transitions, if its
environment performs at most m1 discrete transitions. m1 ≥ n2 implies that
as far as R1 is concerned, the environment of R1||R2 might do at most m1−n2

discrete steps per unit time before R1 may start “going wild”. For R2, this
number is m2 − n1. If the environment of R1||R2 performs not more discrete
transitions in unit time than are given by these two bounds, R1 and R2 fulfill
their guarantees, which in the worst case means that their discrete steps
never fall together, and in this case at most n1 + n2 steps are performed in
unit time. Thus, if the environment of R1||R2 is guaranteed to do at most
min(m1 − n2, m2 − n1) discrete steps in any unit time interval, then R1||R2

will do not more than n1 +n2 steps in a unit time interval, which means that
R1||R2 is (min(m1 − n2, m2 − n1), n1 + n2)-receptive.

112 11. Open Systems

11.3 Summary

Open systems pose special problems to designers of real-time systems. The
concept of receptivity has been developed in order to come to grips with
one of the most important of these problems: That composition might lead
to systems which do not fulfill basic acceptability conditions, even though
the components fulfill them. In order to avoid this, acceptability require-
ments have to be made sharper. Non-Zenoness does not suffice any longer,
the stronger concept of receptivity is needed. We demonstrated that in our
non-standard context, receptivity can be extremely simply formulated, but
the use of the idea in the classical way is not possible, which is why we develop
the concept of (m, n)-receptivity.

12. Making Use of Different Magnitudes

of Reals

Consider the following scenario: A flip-flop is wired up so that with every
rising edge of the clock, it changes its state. Modelling time using the real
numbers and voltage levels using the numbers zero and one, we assume that
the clock line changes its value from 0 to 1 at every even number, and from
1 to 0 at every odd number, and the specification for the flip flop is that
there is an infinitesimal ε so that the output of the flip flop changes from
x to 1 − x from time n to n + ε for n ∈ N and stays constant from n +
ε to n + 1, where the ε allows for the reaction time of the flip flop. The
implementation for this specification would be a set of interconnected digital
gates with their associated timings. The timings would naturally be expressed
by infinitesimals, which expresses that we assume that the gates react very
quickly in comparison to the clock changes of the flip flop. In this context, it
would be convenient to assign different infinitesimals as timings to different
gates, or even to be unspecific about the exact timing values, which would
express that we do not know the relative speeds of the circuits, but only that
they are all far quicker than the global clock.

While at first sight, a constant infinitesimal step width for the time might
seem to make such models difficult, this is not the case. It is natural to
assume that the timings of all the gates, while infinitesimal, belong to the
same magnitude, and that their differences are either exactly zero or again
of the same magnitude, because we can use just standard real numbers for
expressing the timings, scaled by some freely chosen real number, where the
latter is typically an infinitesimal. The only inconvenience using this approach
is that the possible non-determinism with respect to the timings of different
gates must be made explicit and can not stay implicit as with other strategies
in which non-determinism is the default.

Using non-standard means, the concept “x and y belong to the same
magnitude” can be formalized as “x

y is defined and is neither infinitesimal
nor unlimited”, or (equivalently) as “there are standard m, n ∈ N such that
m ∗ |x| > |y| and n ∗ |y| > |x|”.

In this case, we take as infinitesimal step width an infinitesimal which is
smaller in magnitude than the timings of the gates; the error introduced by
this discretization is smaller in magnitude than the timings.

This idea is described in some detail in this section. As a first illustrating
example, we use a hierarchical model of a counter.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_12,
© Springer-Verlag Berlin Heidelberg 2005

114 12. Making Use of Different Magnitudes of Reals

12.1 The Magnitude Concept

Definition 12.1.1. Two real numbers x and y belong to the same magni-
tude, which we abbreviate as x ∼ y, if x

y is defined and appreciable.

The definition implies that neither x nor y may be zero. Understood as a
relation on non-zero numbers, magnitude is obviously symmetric, transitive
and reflexive, which means that is an equivalence relation. For simplicity, we
also call the induced equivalence classes magnitudes. Note that zero does not
belong to a magnitude by this definition (which is a technical decision), and
note that they are not sets – the use of the “standard” predicate in their
definition is essential. For example, the magnitude to which the number 1
belongs are just the appreciable numbers.

We make some simple consequences from the definition explicit:
Scaling a number by a non-zero standard number does not change its

magnitude, and after both of a pair of numbers of the same magnitudes
are scaled by the same non-zero number, the results are again of the same
magnitude:

Proposition 12.1.1. For y ∈ R and standard non-zero x ∈ R, we have
y ∼ x ∗ y.

For x, y, z ∈ R with y ∼ z, x �= 0, we have x ∗ y ∼ x ∗ z.

The following proposition is important for the case that a system is de-
signed using a standard number of standard timing constants and is, as a
whole, scaled to some other magnitude. In some cases, derived timing behav-
ior can be described by values computed by via linear combination of design
timing with standard factors; the following proposition is applicable.

Proposition 12.1.2. Let C′ denote a class containing only standard non-
zero real numbers, and let C be defined by x ∈ C ↔ ∃(x′ ∈ C′) : x = x′ ∗a for
some fixed non-zero a ∈ R, i.e., all elements of C are scaled by the same (not
necessarily standard) a. Then for any y which can be constructed as a linear
combination from elements of C with standard factors and with a standard
number of summands, we have y = 0 ∨ ∀(z ∈ C) : y ∼ z.

The proposition tells us that under some plausible assumptions on design
constants of a system, a linear combination of such values will either be
equal to zero or belong to the same magnitude as the timing constants.

Proof. All standard values but zero belong to the same magnitude. This im-
plies that also the scaled elements in C all belong to the same magnitude.
Considering the multiplications in the linear combination, note that multi-
plying a number by a standard number does not change its magnitude, or
it yields zero. In our case, the product can also be expressed as the scaling
factor a times a standard number. The sum of a standard number of such
elements can be expressed, by factoring out a, as the product of a and the
sum of a standard number of standard numbers, which means that it can be

12.2 Rule Schemes and the Ripple Counter Example 115

written as the product of a and a standard number. If the latter number is
not zero, the product is of the same magnitude as the originally scaled num-
bers, since it is a standard number scaled by the same a as used for scaling
the original elements.

We define an order < between magnitudes (understood as equivalence
classes) via the normal order < of absolute values of their representatives.

Proposition 12.1.3. With respect to the magnitude order <, the collection
of magnitudes is dense and unbounded.

Proof. Denseness: Take two positive Representatives of two different mag-
nitudes, and call the smaller one x and the larger one y. Consider z =

√
x ∗ y.

It is a standard result that z is located between x and y. We will prove that
both z

x and y
z are unlimited, which implies that the magnitude to which z

belongs lies between those of x and y.
Since x and y belong to different magnitudes, y

x is unlimited; this implies
(use contradiction) that also

√
y
x is unlimited.

Since z
x =

√
x∗y
x =

√
y√
x
, where the latter is unlimited, z belongs to a strictly

larger magnitude than x. And since y
z = y√

x∗y =
√

y√
x
, y belongs to a strictly

larger magnitude than z.
Unboundedness: For any unlimited number u and for nonzero x, u ∗ x

obviously belongs to a strictly larger magnitude than x, and x
u obviously

belongs to a strictly smaller magnitude than x.

Proposition 12.1.3 has convenient consequences for our ability to choose
different time scales for describing phenomena of timed systems, since given
any system in the description of which a standard finite number of time scales
is used, if a time scale is needed which is larger or smaller than all already
employed, or which lies between any two already used, we are assured that
such a time scale exists.

The following proposition encapsulates the insight that the truth of a
strict relation between two numbers does not depend on errors which are
smaller than the magnitude of the difference of the numbers:

Proposition 12.1.4. Consider two numbers x and y with x > y. Then,
adding any number smaller in magnitude than x−y to either x or y does not
change the relation.

This is a trivial corollary of the fact that in order to change the truth value
of x > y by addition of a number z to one summand, the absolute value of z
must be at least x − y.

12.2 Rule Schemes and the Ripple Counter Example

For the description of systems with a repetitive structure, it is convenient to
allow rule schemes. They allow multiple invocations of similar rules working
just with different locations. Rule schemes are rules with formal parameters

116 12. Making Use of Different Magnitudes of Reals

for values and locations. Such a rule scheme sometimes can make good use of
non-parameter locations which should be local to itself. We use the keyword
“LOCAL”to introduce function symbols which are understood to be interpreted
as different functions for different instantiations of the rule scheme. Addition-
ally, we will use function schemes, i.e., symbols which get terms, not values
as their arguments and can build other terms out of them.

Counter =def

IF falling_clock_edge
THEN value := (value + 1) mod 16
ELSE SKIP

Fig. 12.1. Rule describing a 4-bit counter.

As an example, consider a model of a 4-bit counter which performs one
step when the clock has a falling edge. On a high abstraction level, we can
express such a counter with the rule in Fig. 12.1.

JKFF(J, K, T, Q) =def

LOCAL risingT_J, risingT_K
IF rising_edge(T)
THEN || risingT_J := J

|| risingT_K := K
ELIF falling_edge(T)
THEN IF risingT_J = 1 AND risingT_K = 1

THEN Q := 1-Q
ELIF risingT_J != risingT_K
THEN Q := risingT_J
ELSE SKIP

ELSE SKIP

Fig. 12.2. A rule modelling a JK-master-slave flipflop.

We construct such a counter as a four bit ripple counter consisting of
four JK master slave flip flops. Let us first describe the function of such a
circuit. If the data inputs J and K of such a flip flop are both set to 1 during
a rising edge of the clock, the circuit changes its output Q on the following
falling edge of the clock input T. If the data inputs are both zero, the flip flop
does not change its state; and if the data inputs differ, the output assumes
the values of input J on the falling edge of the clock. A high level model of
such a circuit is the rule scheme given in Fig. 12.2. The expressions with the
symbols rising_edge and falling_edge are assumed to yield “true” if the
respective signal change has been detected for the argument symbol. Thus,
the symbols can not just represent functions (since not only the current value

12.2 Rule Schemes and the Ripple Counter Example 117

of T is relevant for the value of the expression, and the current value would
be the only value available to a proper ASM function); we assume that they
represent function schemes and we assume that such function schemes can
be defined so that they yield the expected results for their arguments.

The local symbols risingT_J and risingT_K are used to record the values
of the input during rising edges of the clock which have to be known on the
next falling edge of clock. T, Q, J and K are formal parameters for the clock,
the output and the two data inputs of the circuit.

Using the JK flip flop rule scheme, we can put together a ripple counter
scheme and instantiate it in the manner described in Fig. 12.3. The scheme
describes how the output of one flip flop is wired up with the clock input of
the other, as is characteristic of a ripple counter, and that the data inputs are
set to one; the last line is an instantiation of the scheme which uses nullary
symbols whose values represent the current clock and the current values of
the four flip flops.

RippleCounter(T, Q0, Q1, Q2, Q3) =def

|| JKFF(1, 1, T, Q0)
|| JKFF(1, 1, Q0, Q1)
|| JKFF(1, 1, Q1, Q2)
|| JKFF(1, 1, Q2, Q3)

RippleCounter(clock,q0,q1,q2,q3)

Fig. 12.3. A model of a ripple counter.

In which sense can the ripple counter scheme be considered an implemen-
tation of the high level counter scheme? We have to deal with several prob-
lems, disregarding initialization: (1) We have to relate values of the low level
falling_edge(clock) predicate and the high level falling_clock_edge
predicate. (2) The value of the high level counter has to be mapped some-
how to the four q-parameters of the ripple counter instantiation. (3) We have
to allow for the fact that one incrementation step of the high-level counter
might be expressed by several steps of the ripple counter: from a situation in
which all q-values are 1 and a falling edge is detected, it takes not just one
but four dt-steps until the highest bit has switched to 0.

Problem (1) is solved by just assuming that the low-level predicate and
the high level predicate are true exactly when a falling edge of the clock edge
is detected.

The first step to the solution of problem (2) is an abstraction function
which computes the value of the high-level rule as 8*q3+4*q2+2*q1+q0, to
be interpreted in corresponding states of the low-level rule. This abstraction
function is only a first step, since during “ripples”, i.e., when a carry occurs
for some bit(s) of the counter, the low level ASM goes through extra val-
ues (as described in problem (3)): where the high-level run has a transition

118 12. Making Use of Different Magnitudes of Reals

from value 15 to value 0, the latter value being stable up to the next falling
clock edge, the low level run has (using the order q3,q2,q1,q0 for the bits)
1111->1110->1100->1000->0000 (but only if no other falling clock edge is
detected), where the last value is also stable up to the next falling clock edge.
If one or more other falling clock edges intervene, such a sequence might
also look like 1111->1110->1101->1001->0001 (and there are many other
possibilities, depending on the moments of further falling edges of clock).

We might deal with this problem by assuming that changes of the clock
are separated by time intervals of a larger magnitude than the reaction time
of the flip flop; this is a natural abstraction as long as the reaction time of the
circuits driven by a clock is negligible in comparison to the clock cycle, which
exactly means that we can disregard the working times of some circuit. In
this case, no other falling clock edge can happen during the ripple phase of
the counter (as long as it has standard finite length). Thus, the only possible
value sequence is 1111->1110->1100->1000->0000.

But also if no falling clock edge intervenes during a ripple phase of the
counter, we have the problem that the ripple counter goes through the values
14, 12 and 8 before it reaches the zero during a ripple phase of maximal
length (and through a shorter sequence of intermediate values in some other
cases). A circuit using the output of the counter as input might malfunction
because of this; but when? Here again, time scale considerations can help. We
associate a reaction time with the inputs of a circuit: Single changes on an
input line are only noticed by the circuit after the line has stabilized for some
time; this is a plausible abstraction, as long as the input does not change
its value often during such a reaction time phase. If the reaction time of the
circuit which uses the output of the counter as input is of a larger scale than
the flip flop reaction time, the ripple phase would not hurt, since this phase
would, because of its short duration (a standard finite multiple of the flip
flop reaction time), not be noticed. And if the reaction time plus the working
time of the circuit reading the output of the ripple counter is, at the same
time, of a smaller scale than the clock cycle, this ensures that it has enough
time to compute its result before the counter value changes again.

12.3 Making Delays Explicit

A problem of the ripple counter implementation of the high level counter is
its dependence on the step width dt. If another step width is chosen, the
timing does not only change because of the different discretization of some
timing constants. This results from the fact that the timing of the flip flop is
not modelled explicitly – the flip flop model assumes that after a falling edge
on the clock input, it takes just time dt until the output is updated.

The timing might be modelled explicitly in different ways. One strategy
which is common in hardware languages is to split the behavior of a circuit
into a logical and a timing part. E.g., a NAND which changes its output only

12.3 Making Delays Explicit 119

after some delay after an input has changed is modelled by the serial con-
nection of an instantaneously working NAND and a circuit only representing
the delay.

Hardware description languages commonly allow the expression of several
forms of delay mechanisms. Two common ones are inertial delay and trans-
port delay. The specific semantics differ for different formalizations, but the
basic idea is that a change at the input of an inertial delay circuit cancels a
change event for the output which has been scheduled but not yet performed,
while for transport delay, no such cancellation takes place.

To be specific, we describe the two forms of delay by two rule schemes
with formal parameters for the input signal, the delay time and the output
signal, both with two local symbols: one for detecting changes of the input
signal, and one for recording information for one (InertialDelay) or sev-
eral (TransportDelay) scheduled changes. Fig. 12.4 gives rules implementing
these forms of delay.

InertialDelay(In, Delay, Out) =def

LOCAL old_In, next_change_time
|| old_In := In
|| IF old_In �= In

THEN next_change_time := now+Delay
ELIF now ≥ next_change_time
THEN next_change_time := ∞
ELSE SKIP

|| IF now ≥ next_change_time
THEN Out := old_In
ELSE SKIP

TransportDelay(In, Delay, Out) =def

LOCAL old_In, change
|| old_In := In
|| IF old_In �= In

THEN change(In, now+Delay) := true
ELSE SKIP

|| IF ∃(s, t : change(s,t) AND t ≤now)
THEN CHOOSE s, t : change(s,t) AND t ≤now IN

Out := s
change(s,t) := false

ELSE SKIP

Fig. 12.4. Rule schemes expressing two forms of delay.

Let us first consider rule scheme InertialDelay. It has three synchronous
branches: The first just records the current value of the input so that in
the next cycle, an input signal change can be detected. The second updates
the internal information about scheduled changes; and the third performs
an update if its time has come. Rule scheme TransportDelay is similar, but

120 12. Making Use of Different Magnitudes of Reals

here, the update of the internal data structure representing scheduled updates
is performed in the third branch for those changes which have just been
performed. Note that in the third synchronous branch of TransportDelay, if
there exists a pair of values s and t as in the condition, there is just one such
pair, which is then chosen and processed in the THEN branch.

The important point about an inertial delay is that at its output, pulses
are never shorter than the delay time:

Proposition 12.3.1. Consider a location l which is written at most by an
instantiation of rule scheme InertialDelay. Then, between value changes of
l, at least the delay time of the instantiation passes.

Proof. Consider a system with an instantiation of InertialDelay so that
the output location l of that instantiation is not written by any other rule.
Consider any run q of this system and a position i ∈ N, i > 0 with a value
change at l, i.e., a position which fulfills q(i)(l) �= q(i − 1)(l).

We use an induction to prove an invariant for the value of
next_change_time:

Claimed invariant. From position i on, the value of the symbol
next_change_time local to the rule scheme instantiation considered will
never be smaller than t = q(i − 1)(now+Delay) = (i − 1) ∗ dt + Delay.

Induction start. For position i, inspection of the rule scheme shows that
the occurrence of an update of location l at position i in the run implies
that at that position, the value of the symbol next_change_time local
to the rule scheme instantiation considered must either be ∞ (if no input
change has just been detected at position i−1 in the run) or t (as defined
above, if an input change has been detected at position i− 1). It can not
be smaller.

Induction step. For a position j > i, either the value of next_change_time
did not change in the last step (which implies the claim because of the
induction assumption), or it has just been set to (j − 1) ∗ dt + Delay
because of a detection of an input change, which is larger than t because
of j > i.

The first moment at which the value of the output location might change
is dt after the first moment when now ≥ t holds. Let us call the position at
which that condition is fulfilled j − 1, so that j is the position of the first
possible change after that at position i. We see that the condition now ≥ t
at that moment means (j − 1) ∗ dt ≥ (i − 1) ∗ dt + Delay; adding dt on both
sides, we see that j ∗dt, which is the moment of the first possible change after
that of i ∗ dt, comes at least by Delay later than i ∗ dt.

As long as the time interval between changes of the inputs is always longer
than the delay time, both delay rules are equivalent. They only differ if during
the propagation time for one signal change, the input signal changes anew.
For InertialDelay, the propagation of the earlier signal change is canceled;

12.4 Analyzing a Logical Circuit for Hazards 121

for TransportDelay, each signal change of the input is replayed after the
delay (plus a discretization error) on the output.

Let us assume that the delay behavior of a JK flip flop with timing con-
stant D (for the delay from the falling edge of the clock input to the update
of the output) is well expressed as an inertial delay. Then we can describe a
JK flip flop with explicit timing as in Fig. 12.5

JKFF_D(J,K,T,D,Q) =def

LOCAL internal_Q
|| JKFF(J, K, T, internal_Q)
|| InertialDelay(internal_Q, D, Q)

Fig. 12.5. A JK-master-slave flipflop with explicit delay.

If a ripple counter is implemented with instances of the rule scheme
JKFF_D, the appropriateness of the implementation of the high level counter
depends on the relative timing of distances of falling edges of the global clock
and the delay time of the flip flop. The common assumption that the de-
lay time of the flip flop is negligible with respect to the clock cycle can be
expressed formally by the assumption that the delay time is of a smaller
magnitude than the clock cycle; and since we can assume that the step width
dt of the underlying non-standard time model is of a smaller scale than the
delay time, we ensure that discretization errors are very small in comparison
to the delay time.

12.4 Analyzing a Logical Circuit for Hazards

Another timing-related problem of digital circuits are hazards. Hazards are
short-term changes of an output of a circuit after changes of the inputs re-
sulting from gate delays. As a simple example, consider a circuit computing
the logical function q := (x AND y) OR (z AND NOT y) from the inputs x,
y and z. Such a circuit can be implemented from two AND gates, a NOT
gate and an OR gate as given in Fig. 12.6.

Assuming that all gates react with the same inertial delay of τ (for sim-
plicity assumed to be a multiple of dt) on input changes, we can express this
circuit by the instantiation of the rule scheme HazardCircuit given at the
end of the set of ASM definitions in Fig. 12.7.

The definition and use of rule scheme UpdateIfChanged expresses the
modelling decision that the logical gates are not assumed to perform any work
if the next value they compute is equal to the current value of the output wire.
Otherwise, the system would show unlimited activity in these components,
since in each step, an update would be generated. Another approach dealing
with this problem would have been to ignore the locations updated by the
gates when it is determined if the system shows finite or infinite activity.

122 12. Making Use of Different Magnitudes of Reals

x

y
q

z

Fig. 12.6. A circuit leading to a hazard in some situations.

We will now analyze the system and detect a possible hazard. Let us
consider the following situation: The inputs x, y, z are all set to 1, and we
wait until the system has stabilized (there is no feedback and there are no
active components, so it will stabilize in finite time). The output of the first
AND gate is 1; the outputs of the NOT gate and of the second AND gate are 0;
and the output of the OR gate is 1.

In a run starting from this situation, the system stays stable as long as
none of the inputs change, which implies that the output stays at 1. Now
consider that input y changes from 1 to 0 and let the first moment with the
new value of y be at time t. The logic formula for our system shows that the
output should not change in this case. But in fact, a negative pulse of width τ ,
a hazard, will occur at the output; let us first look at this in a rough manner,
disregarding the infinitesimal step widths which might lead to infinitesimal
errors:

1. At time t, the change of y leads to changes of the outputs of the first AND
and of the NOT being scheduled for time t + τ + dt.

2. Around time t + τ , the change of y has propagated through the first
AND (making its output 0) and through the NOT, but not yet through the
second AND or the OR gate; but in this moment, both inputs of the OR
gate are zero, and, thus, a change of the output of the circuit from 1 to
0 is scheduled; and both inputs of the second AND gate are 0, so a change
of its output from 0 to 1 is scheduled.

3. Around time t+2∗τ , both scheduled changes become effective: q becomes
0, and the second input of the OR gate becomes 1 again, leading to another
change of the output being scheduled.

4. Around time t + 3 ∗ τ , the scheduled change of q is performed, and the
system becomes stable again.

This analysis is not exact because it disregards the following facts about our
model:

– When a change of the input of a gate with explicit timing takes place, first
the untimed (“instantaneous”) version of the gate computes its output,
which needs time dt.

12.4 Analyzing a Logical Circuit for Hazards 123

UpdateIfChanged(loc, newVal) =def

IF loc �= newVal
THEN loc := newVal
ELSE SKIP

AND(X,Y,Q) =def

UpdateIfChanged(Q, min(X,Y))
OR(X,Y,Q) =def

UpdateIfChanged(Q, max(X,Y))
NOT(X,Q) =def

UpdateIfChanged(Q, 1-X)

AND_D(X,Y,D,Q) =def

LOCAL internal_Q
|| AND(X, Y, internal_Q)
|| InertialDelay(internal_Q, D, Q)

OR_D(X,Y,D,Q) =def

LOCAL internal_Q
|| OR(X, Y, internal_Q)
|| InertialDelay(internal_Q, D, Q)

NOT_D(X,D,Q) =def

LOCAL internal_Q
|| NOT(X, internal_Q)
|| InertialDelay(internal_Q, D, Q)

HazardCircuit(X,Y,Z,Q) =def

LOCAL neg_Y, O1, O2
|| NOT_D(Y, τ, neg_Y)
|| AND_D(X, Y, τ, O1)
|| AND_D(neg_Y, Z, τ, O2)
|| OR_D(O1, O2, τ, Q)

HazardCircuit(x,y,z,q)

Fig. 12.7. Model of a circuit illustrating a hazard.

– When a change of the output of the untimed gate is detected at its input
by the delay rule, its output only changes after � τ

dt� ∗ dt time units.

Altogether, a change at an input of a timed circuit can only lead to a change
at its output (if at all) after time τ+dt. Since we assume that the time delay τ
is of a larger magnitude than dt, this difference can be ignored in most cases.
In our specific case, this might just lead to the hazard being an infinitesimal
of magnitude dt being shifted or longer than expected.

The following section discusses conditions under which such tedious cycle-
counting as just performed is not necessary.

124 12. Making Use of Different Magnitudes of Reals

12.5 Modelling Missing Knowledge Explicitly

Let us consider another variant of the timing problem for digital circuits.
Mandrioli1 points out that the assumption of a constant infinitesimal step
width for the work of system components yields a high degree of synchronicity
which might be inappropriate in some cases. He specifically mentions models
of electronic circuits in which gate delays and other signal propagation times
can depend on many factors not modelled explicitly.

As an example for such a case, we consider a situation in which under
synchronous execution, no hazards can occur, while under more realistic as-
sumptions about our knowledge about relative signal propagation times of
system components, the occurrence of hazards can not be excluded.

Consider again the circuit of Fig. 12.6, but consider now a stable situation
resulting from the inputs x=1, y=0 and z=1 and a change of y to 1. Under
a synchronous interpretation (or under an interpretation in which all gate
delays are identical), no hazard occurs since the output of the first AND gate
becomes 1 in this case before the output of the second AND turns to 0; thus,
there is always at least one input of the OR gate equal to 1, which means that
the output of the OR stays 1 all the time.

But now consider the case in which the first AND takes longer to compute
its result than the NOT and the second AND combined. In this case, the output
of the first AND turns to 1 only after the output of the second AND has turned
to 0, which means that there is some time in which both inputs of the OR
gate are zero. If this time is longer than the inertial delay modelling the gate
delay of the OR gate, a hazard will occur at its output.

This discrepancy can be resolved by making explicit in our model that
knowledge is missing about the relative gate delays of the gates. Firstly, this
means that we have to use gate models with explicit timing; and secondly,
we have to express that the delays might be different for the different gates.
For this case, an NTASM model of the circuit might look like in Fig. 12.8.

IndependentDelaysHazardCircuit(X,Y,Z,Q,T1,T2,T3,T4) =def

LOCAL neg_Y, O1, O2
|| NOT_D(Y, T1, neg_Y)
|| AND_D(X, Y, T2, O1)
|| AND_D(neg_Y, Z, T3, O2)
|| OR_D(O1, O2, T4, Q)

IndependentDelaysHazardCircuit(x,y,z,q,τ1,τ2,τ3,τ4)

Fig. 12.8. A circuit illustrating a hazard, where speeds of components are inde-
pendent from each other.

1 Personal communication.

12.5 Modelling Missing Knowledge Explicitly 125

Here, we make explicit that the delay times of the gates might be different;
further declarative restrictions on the different τi might be used to express
knowledge about relative timings of the gates which we might possibly have.

Note that this description might seem unnecessarily wordy in comparison
to models using formalisms in which nondeterminism can be implicit; this is
just the price we have to pay for explicit nondeterminism.

Let us analyze in more detail a condition under which hazards can not
occur in the system above if only a single input bit changes. This will illustrate
an example of the case where we do not have to count each cycle in order to
avoid errors.

Proposition 12.5.1. Consider the instantiated rule scheme
IndependentDelaysHazardCircuit(x,y,z,q,τ1,τ2,τ3,τ4), where the τi re-
sult from standard real numbers scaled by some arbitrary non-zero real num-
ber, and the step width dt is assumed to be of a smaller magnitude than the τi.

If τ4 is larger than the absolute value of τ1 + τ3 − τ2, hazards resulting
from single input bit changes of that circuit can not occur.

Proof. From the inputs to the output of the circuit, four different paths are
possible, one from the x, two from the y and one from the z. We only look for
hazards occurring from changes of a single input bit when the system is in a
stable state. If the x or the z input changes, the change will propagate along
its only path until it either stops being propagated at some gate or it reaches
the output q; this depends on the rest of the system, but is not relevant for
hazard generation. Thus, only with changes of y, from where two paths lead
to the output, hazards can happen.

If some of the single-path inputs x and z are zero during the change of y,
propagation of the y-signal change along the paths which are common with
the zero-inputs is blocked at the AND gates, i.e., in this case, at most one,
and possibly none, of the inputs of the OR gate changes because of the signal
change. In these cases, no hazard can occur. Thus, we only have to deal with
the case that x and z are both one, since only in this case, two changes can
in general occur at inputs of the OR gate.

Note that in both steady states which are left to be considered, one input
of the OR gate is zero and the other is one. The accumulated signal propagation
times from y to the inputs of the OR gate are τ2 for the upper path and τ1 +τ3

for the lower path. If the absolute value of the difference between them is
smaller than τ4, there is no problem, because the inertial delay of the OR gate
will buffer possible effects of the first signal change away.

This almost closes the argument; it only rests to be shown why it does not
invalidate our argument that we disregarded the infinitesimal errors induced
by our discretization of time. For this, we apply Proposition 12.1.2 to the
τi, which fulfill the requirements of the proposition. The proposition implies
that τ4 − |τ1 + τ3 − τ2| is either zero or of the same magnitude as the τi.
Under the condition that it is positive (which is the condition considered in
the proposition), this means that the difference is of a larger magnitude than

126 12. Making Use of Different Magnitudes of Reals

dt. Applying Proposition 12.1.4, we see that additive errors of magnitude
dt during the computation of the propagation times will not invalidate the
argument.

Arguments like the above about the possibility of ignoring errors of suf-
ficiently small magnitude are only valid if (1) we use strict comparisons of
quantities, (2) errors are additive, and (3) we know that the absolute value
of the difference of the quantities compared is larger in magnitude than the
error; or in short, if the conditions of Proposition 12.1.4 are fulfilled.

12.6 Hazards Resulting
from the Infinitesimal Discretization

Consider the circuit of Fig. 12.6 again and an NTASM model for it using
untimed gates instead of the timed gates used earlier, as in Fig. 12.9. Con-
sidering the initial configuration corresponding to that of the case considered
earlier and a change of y from 1 to 0, we see that after time dt, the output
of the first AND changes from 1 to 0 and that of the NOT from 0 to 1. After
time 2 ∗ dt the second AND has changed from 0 to 1 and the OR from 1 to
0, resulting in the start of the hazard. After time 3 ∗ dt the output of the
OR changes again, finishing the hazard and leading to the new stable state.
Thus, similar to the case considered before, we have a hazard at q, but this
time it is only of length dt.

Can infinitesimal hazards like this also happen in circuits in which tim-
ing is handled explicitly? This would be an inconvenient counter-intuitive
consequence of our model of time which would make it difficult to express re-
finement of a more complex untimed circuit (e.g., one computing the function
q := (x AND y) OR (z AND NOT y) directly) into components.

Note that also semantical approaches for gates not using discretized time
but“real”zero-time steps have analoguos problems, in which the output wave-
form resulting from a simulation might depend on the order of schedulings
chosen for the gate activities, possibly resulting in zero-time hazards – so,
this problem is not specific to our model of time. In hardware simulation
languages based on a classical model of time, this problem is sometimes dealt
with by not propagating any output signal changes until the system stabilizes.

UntimedHazardCircuit(X,Y,Z,Q) =def

LOCAL neg_Y, O1, O2
|| NOT(Y, neg_Y)
|| AND(X, Y, O1)
|| AND(neg_Y, Z, O2)
|| OR(O1, O2, Q)

UntimedHazardCircuit(x,y,z,q)

Fig. 12.9. An untimed hazard circuit.

12.7 Summary 127

An example is VHDL [LMS86].
We can identify a modelling strategy under which the problem disappears

in our framework, and which is based on the same idea as just described for
classical approaches, in the following way: We ensure that on every data
path from some wire where hazards might occur to any wire of the system
where hazards must not occur, an inertial delay must be passed which has a
timing constant larger than the maximal length of the hazard. In this case,
the first signal change resulting from a possible hazard will be cancelled by
the second signal changed before the first has been propagated to the output.
With the strategy used above for modelling timing, i.e., by appending inertial
delays of a larger magnitude than the step width dt to the outputs of the
untimed circuits, this condition is fulfilled automatically: At the outputs of
circuits with explicitly given timing, no hazards resulting from infinitesimal
discretization can occur.

12.7 Summary

It is illustrated how different magnitudes of infinitesimals can be used to
make explicit that a system might be considered at different time scales, or
at different levels of dynamical abstraction.

There are infinitely many magnitudes, and they form a dense collection
which has neither a lower nor an upper bound, i.e., between any two magni-
tudes, there is always another, and for any magnitude, there is always a larger
and always a smaller one. Because of this denseness and unboundedness of
magnitudes, we are able to very flexibly choose time scales for different levels
of abstraction.

Often, the abstraction that the propagation time of circuits is negligi-
ble with respect to the global clock cycle is not appropriate. In this case,
magnitudes can be use to separate functional and timing related concerns,
by first dealing with functional and logical issues and ignoring timing issues
(made explicit by assuming that the relevant timing constants are of different
magnitudes), and by afterwards taking timing issues into account, by using
estimations of the timing constants which fulfill more realistic conditions.

If it is appropriate to assume that the timing of the gates and the time
step width dt are of different magnitudes, reasoning about the system can
become quite simple because one does not have to count each single step of
width dt as long as the number of ignored steps is standard.

13. A Case Study: Fischer’s Protocol

As another example for the NTASM approach, let us describe and analyze
Fischer’s real-time based synchronization protocol [Lam87]. It is meant to
ensure mutual exclusion of access to commonly used resources via real-time
properties of a shared variable. The idea is to use just one shared variable
(which we call v) for coordinating the access to the critical section. The
variable can contain a process id or some neutral value (which we call noProc).
When a process wants to enter its critical section, it first has to wait until
v=noProc; then it sets v to its process id, waits some time, and then reads v
again. If v has kept the old value, i.e., the id of the process considered, the
process may enter its critical section; on leaving the critical section, v is set
to noProc again. If v has not kept its old value, the attempt has failed and
the process must go back and wait again till v=noProc.

Two time distances are relevant for the correctness of the protocol: the
time from ensuring that v=noProc holds up to the moment at which v is
set to the process id; this span is required to be smaller than or equal to a
value called d1. The other time span is that from setting v to the process id
to checking it again. This is assumed to be greater than or equal to a value
called d2. Mutual exclusion is ensured for d2>d1.

What distinguishes our approach from classical ones is that the formal-
ization and proof is based on an infinitesimal discretization of time.

13.1 A Hybrid Abstract State Machine
Describing Fischer’s Protocol

In the NTASM for Fischer’s protocol, we will model processes as being in one
of five different states. For a process p, s(p) denotes the current state. The
states are the following:

– s(p)=nc,“non-critical”: this state represents situations in which the process
does not attempt to enter its critical section.

– s(p)=rv, “read v”: the process attempts to enter its critical section and
reads the shared variable.

– s(p)=w1, “wait at most d1”: after checking v, the process waits at most
time d1 before v is set to the process id.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_13,
© Springer-Verlag Berlin Heidelberg 2005

132 13. A Case Study: Fischer’s Protocol

– s(p)=w2, “wait at least d2”: after setting v to its process id, the process
waits at least time d2 before v is checked again.

– s(p)=cr, “critical section”: the process is in its critical section.

In order to express the waiting times, we will use two dynamic functions
tr(p) and tw(p) mapping processes to points in time. tr(p) will be equal
to the time when process p has read v as being noProc for the last time, and
tw(p) will be equal to the time when process p has written the process id
the last time to v.

Proc is the finite set of process ids.
The initial conditions of the system are the following:

FischerInitial ⇔def

now=0 ∧ v=noProc ∧ ∀(p ∈ Proc) : s(p)=nc

This means that at the start, time is zero, the coordination variable signi-
fies that no process attempts to enter its critical section or is there, and that
all processes are non-critical.

The system transitions are described by the following rule. In each step,
one of seven alternatives is chosen. The first alternative is that only time
flows, i.e., no process attempts to move from one state to another. The other
alternatives describe that some process attempts to move from one state to
another. As will be seen when the rules are defined, each rule increments
the time and chooses some process nondeterministically from the processes
in some state, and possibly under some additional conditions. The six alter-
natives for possible moves of the process are given by named rules which are
defined and discussed in sequence.

FischerRule =def

OR incremTime
OR enterrv
OR enterw1
OR enterw2
OR resign
OR entercr
OR exitcr

Rule incremTime describes the steady flow of time:

incremTime =def

now := now + dt

Rule enterrv describes that a process in the non-critical state might
decide to attempt to use its critical section. It does this by moving on to the
state where the shared variable is checked.

enterrv =def

|| incremTime
|| CHOOSE(p:Proc):s(p)=nc IN

s(p):=rv

13.1 A Hybrid Abstract State Machine Describing Fischer’s Protocol 133

Rule enterw1 describes that from rv, w1 can be entered if v=noProc. The
time when the variable is read is recorded in tr(p).

enterw1 =def

|| incremTime
|| CHOOSE(p:Proc):s(p)=rv ∧ v=noProc IN

|| s(p):=w1
|| tr(p):=now

Rule enterw2 describes that a process in w1 might move on to w2. v is set
to p, which is used as the process id, and the time of this write access to v
is recorded in tw(p). The assumption that the move from w1 to w2 happens
in time d1 after reading v as noProc will be encoded by a global assumption
which will be discussed later.

enterw2 =def

|| incremTime
|| CHOOSE(p:Proc):s(p)=w1 IN

|| s(p):=w2
|| v:=p
|| tw(p):=now+dt

Rule resign describes that a process in w2 might move back to rv if at
least time d2 has passed since v has been written and if the value in v has
changed since process p set it to its id.

resign =def

|| incremTime
|| CHOOSE(p:Proc):s(p)=w2 ∧ now>=tw(p)+d2 ∧ v!=p IN

s(p):=rv

Rule entercr is very similar to rule resign; the difference is that it checks
that v has not changed since process p wrote to it, and that the target state
is then cr.

entercr =def

|| incremTime
|| CHOOSE(p:Proc):s(p)=w2 ∧ now>=tw(p)+d2 ∧ v=p IN

s(p):=cr

The last rule exitcr describes that process p leaves the critical state for
the noncritical and resets v to noProc.

exitcr =def

|| incremTime
|| CHOOSE(p:Proc):s(p)=cr IN

|| s(p):=nc
|| v:=noProc

134 13. A Case Study: Fischer’s Protocol

Our ASM does not express the assumption that between checking that
v=noProc and setting v to p not more than time d1 passes. We might oper-
ationalize this assumption, but it is more convenient to express this assump-
tion declaratively by restricting our attention to system behaviors of the ASM
which fulfill the following formula invariantly:

FischerAssumption =def

∀(p ∈ Proc): s(p)=w1 → now+dt≤tr(p)+d1

If we are in a configuration in which process p in state w1 is selected to move
on to w2, v has the new value p at the next moment, i.e., at time now+dt.
Formula FischerAssumption ensures that all processes in state w1 leave for
w2 before it is too late, i.e., before time d1 has passed since v=noProc has
been checked; otherwise, the mutex property might be invalidated.

13.2 Specification and Proof of the Mutex Property

Formally, we will use the assumption by showing that for all system behaviors
of the ASM for which FischerAssumption is valid, the mutual exclusion
property holds, which we describe by the following formula:

FischerMutex =def ∀(p, q ∈ Proc) : s(p)=s(q)=cr → p=q

Now we are ready to formulate the main theorem:

Theorem 13.2.1. All ASM-runs starting in the state fulfilling FischerIni-
tial, allowed by FischerRule with d1<d2 and fulfilling invariantly Fis-
cherAssumption fulfill invariantly FischerMutex.

We prove the theorem with completely discrete means, by finding an in-
ductive invariant of the system which implies FischerMutex. The hard part,
as is typical in proving invariants of discrete systems, is in finding an ade-
quate inductive invariant, i.e., a state property which is fulfilled by the initial
condition, which is preserved by each transition of the system, and which im-
plies the property to be shown to be invariant [MP95]. We use the following
idea for constructing an inductive invariant: We see the development of the
whole system as proceeding cyclically through four phases:

– The system is passive. We describe this phase by the following formula:

PhPassive =def

∧ ∀(p ∈ Proc) : s(p) ∈ {nc,rv,w2}
∧ v=noProc

Processes are non-critical (nc), just reading the variable (rv), or waiting to
be allowed to re-check the variable (w2). v=noProc implies that processes
in state w2 will have to pass through rv again before they get a new chance
to access their critical sections.

13.2 Specification and Proof of the Mutex Property 135

– Processes have started pouring into state w1:

PhFillingW1 =def

∧ ∀(p ∈ Proc) : s(p) ∈ {nc,rv,w1,w2}
∧ v=noProc
∧ ∃(p ∈ Proc) : s(p)=w1
∧ ∀(p ∈ Proc) : s(p)=w1 → tr(p)≤now

Now, the only forbidden state is cr, and there is at least one process in
state w1. v=noProc means that in this cycle, none of the processes which
have entered w1 have left that state. The last conjunct expresses that the
time recorded in tr(p) for w1-processes is smaller than or equal to the
current time. We will need that conjunct in the proof of the fact that when
a process enters state cr, no process is in w1.

– Processes are leaving state w1:

PhEmptyingW1 =def

∧ ∀(p ∈ Proc) : s(p) ∈ {nc,rv,w1,w2}
∧ v �=noProc
∧ ∀(p ∈ Proc) : s(p)=w1 → tr(p)≤now
∧ ∀(p ∈ Proc) : s(p)=w1 → tr(p)<tw(v)

This phase is entered as soon as the first process leaves w1 in PhFillingW1,
and it extends until the first process enters cr. In this phase, v is equal to
the id of the last process which has entered w2. The last conjunct expresses
that since the last process has entered w2 (and written its id to v, i.e.,
since time tw(v)), no process has entered w1, i.e., the read-times for all
w1-processes are smaller than the write-time of process v. This property
will also be used for proving that no process is in w1 when some process
enters cr.
This phase is left as soon as some process leaves w2 for cr.

– Some process is in its critical section:

PhUsingResource =def

∧ ∀(p ∈ Proc) : s(p) ∈ {nc,rv,w2,cr}
∧ v �=noProc
∧ s(v)=cr
∧ ∀(p ∈ Proc) : s(p)=cr → p=v

The last process having entered w2 from w1 will be granted the right to
enter its critical section. Because of the real-time properties of the protocol,
it will be ensured that w1 is empty when a process enters cr. Thus, in this
phase, no process is in state w1. The only process in cr is the one with id v.

In order to make our idea precise, we show that the following formula is
indeed inductive under the assumption FischerAssumption:

136 13. A Case Study: Fischer’s Protocol

FischerInductive =def

∨ PhPassive
∨ PhFillingW1
∨ PhEmptyingW1
∨ PhUsingResource

Several lemmata will be used to establish the validity of the following formu-
las. Let us denote by rule[c] the set of configurations reachable from con-
figuration c by one application of rule rule, and let us denote by [[formula]]
the set of all configurations in which formula holds.

LemInitial =def

FischerInitial → FischerInductive
LemOnlyTime =def

∀(c ∈ [[FischerInductive∧ FischerAssumption∧ d1 < d2]]) :
incremTime[c] ⊆ [[FischerInductive]]

LemEnterrv =def

∀(c ∈ [[FischerInductive∧ FischerAssumption∧ d1 < d2]]) :
enterrv[c] ⊆ [[FischerInductive]]

LemEnterw1 =def

∀(c ∈ [[FischerInductive∧ FischerAssumption∧ d1 < d2]]) :
enterw1[c] ⊆ [[FischerInductive]]

LemEnterw2 =def

∀(c ∈ [[FischerInductive∧ FischerAssumption∧ d1 < d2]]) :
enterw2[c] ⊆ [[FischerInductive]]

LemResign =def

∀(c ∈ [[FischerInductive∧ FischerAssumption∧ d1 < d2]]) :
resign[c] ⊆ [[FischerInductive]]

LemEntercr =def

∀(c ∈ [[FischerInductive∧ FischerAssumption∧ d1 < d2]]) :
entercr[c] ⊆ [[FischerInductive]]

LemExitcr =def

∀(c ∈ [[FischerInductive∧ FischerAssumption∧ d1 < d2]]) :
exitcr[c] ⊆ [[FischerInductive]]

LemMutexImplied =def

FischerInductive → FischerMutex

LemInital claims that FischerInductive holds in the start configurations.
LemMutexImplied claims that the inductive property implies the mutex-
property, and the other lemma-formulas claim for each possible transition
of the system that from an inductive configuration which fulfills the assump-
tion, an inductive configuration is reached. We now proceed to prove the
lemmata given above.

13.2 Specification and Proof of the Mutex Property 137

Proof (Proof of LemInitial). LemInitial claims that initial configurations
fulfill the inductive property. This follows from the fact that all initial con-
figurations fulfill PhPassive, a disjunct of the inductive property.

The proofs of the following lemmata will typically be done by considering
each disjunct of FischerInductive as a possible phase to be left by the
transitions separately and show that a transition leaving the phase described
by some disjunct enters a phase described by some other disjunct.

Proof (Proof of LemOnlyTime). Incrementation of now can not change any
conjunct in any disjunct of FischerInductive from true to false. Thus, no
phase will be left just because the flow of time which is expressed by rule
incremTime.

The incrementation of time is a component of all other transitions to be
considered now, and it is as harmless in combination with other changes
as it is when it happens without other changes. We will not mention the
incrementation of time in the other proofs. Implicitly, the incrementation of
time might make it necessary for a process in state w1 to leave that state for
w2, but this is dealt with by the assumption FischerAssumption.

Proof (Proof of LemEnterrv). The move of a process from nc to rv can not
change any conjunct of any disjunct from true to false. Thus, rule enterrv
is as harmless as incremTime in this respect.

Proof (Proof of LemEnterw1). Rule enterw1 might leave PhPassive by mov-
ing a process into state w1, and if this is the case, all four conjuncts of Ph-
FillingW1 are true after the transition.

Also PhFillingW1 contains states in which enterW1 might move some
process from one state to another, but this can not leave the phase.

When the system is in one of the two other phases, rule enterw1 is equiv-
alent to incremTime because v!=noProc.

Proof (Proof of LemEnterw2). Rule enterw2 is equivalent to incremTime in
phases PhPassive and PhUsingResource because no process is in state w1 in
these two phases.

If executed in PhFillingW1, this phase is left for PhEmptyingW1: v is set
to a value different from noProc, and the time of writing an id to v, i.e.,
now+dt in the configuration left, which is equal to now in the configuration
reached, as recorded in tw(v), is larger than the read-times for all processes
in w1.

If executed in PhEmptyingW1, this phase is not left. Again, the property
tr(p)<=now for w1-processes in the start configuration of the transition is
used to establish tr(p)<tw(v) for w1-processes in the target configuration.

Proof (Proof of LemResign). The rule resign does not change the truth
value of any conjunct in any disjunct of FischerInductive.

138 13. A Case Study: Fischer’s Protocol

Proof (Proof of LemEntercr). The only phase in which rule entercr is not
equivalent to incremTime is PhEmptyingW1. In order to move process p to
state cr, enough time must have been spent: the formula now>tw(p)+d2must
be true; p=v must also hold. We will demonstrate that this implies that no
process is in w1 under these conditions, the only problematical consequence
from PhUsingResource under these conditions.

now>tw(p)+d2 and v=p implies now>tw(v)+d2. Since d2 is larger than
d1 and tw(v) is larger than tr(p) for processes p in w1, this means that
now>tr(p)+d1 for processes in w1. Together with FischerAssumption, this
implies that there is no process in w1 when a process leaves w2 for cr.

Proof (Proof of LemExitcr). Rule exitcr can only be non-equivalent to rule
incremTime in phase PhUsingResource, and it moves the system obviously
into phase PhPassive

Proof (Proof of LemMutexImplied). LemMutexImplied claims that inductive
configurations fulfill the mutex property. Only phase PhUsingResource, has
to be considered, since only in this phase there can be a process in state cr.
Since any process in state cr must have id v, this implies that in PhUsin-
gResource, exactly one process is in state cr – the mutex-property.

Now, we can prove the main theorem:

Proof (Proof of main theorem). The formula FischerInductive is induc-
tive for initial condition FischerInitial and rule FischerRule, under
the assumptions d1<d2 and FischerAssumption, by the lemmata LemIni-
tial, LemOnlyTime, LemEnterrv, LemEnterw1, LemEnterw2, LemResign, Le-
mEntercr and LemExitcr, and FischerInductive implies FischerMutex by
lemma LemMutexImplied. Thus, FischerMutex is an invariant of the system.

13.3 Infinitesimality of Step-Width
and Plausibility of Assumptions

Perhaps it might seem strange that the infinitesimality of dt does not enter
the proof. The fact that dt can be chosen infinitesimally is only relevant in two
regards: for the plausibility that the ASM given describes the Fischer protocol
faithfully, and, more specifically, for the plausibility that the assumption that
processes having read v as noProc write v before time d1 has been passed is
properly formalized as FischerAssumption. More exactly, we have to assume
that no matter how many processes there are, there are enough time steps in
phase PhFillingW1 for as many of them to enter w1, and there are enough
time steps so that each of them can leave state w1 before its timer runs
out. This can be made formal by requiring that the specification, i.e., the
program together with FischerAssumption, is not contradictory, since the
latter would mean that the main theorem holds only vacuously.

13.4 Summary 139

The assumption of non-contradictivity is only adequate for numbers of
processes smaller than d1/dt; thus, when d1 and dt are fixed, we have to
admit that the proof is only meaningful for some maximal number of pro-
cesses, but it would be quite messy and involve some additional assumptions
to determine this number exactly. For the original protocol description, this
would be unnatural. By assuming that the number of processes is standard,
that d1 is standard, and that dt is infinitesimal, we can conclude that there
are enough discrete moments to approximate each continuous behavior with
infinitesimal exactness.

13.4 Summary

This chapter applies the framework developed in the previous chapters to
a well-known real-time mutual-exclusion protocol. It is shown that a purely
discrete approach suffices to prove the correctness of the protocol, and that
the infinitesimality of the step width is only relevant in order make plausible
the abstractions used in the algorithm.

14. An ASM Meta-model

for Petri Nets with Timing

14.1 ASM Models of Discrete Nets

This section will present several NTASM interpretations of timing enhanced
Petri nets. Petri nets without timing [Pet62, Rei86] are a widely used model
for discrete nondeterministic distributed systems.

Petri nets are used in several variants, also for discrete systems. We will
build on the quantitatively timed variants on place-transition nets without
capacity restrictions in the places, and call them shortly just nets. The static
structure of a net is defined by two finite disjoint sets P and T , the places and
the transitions of the net, and a function E : P ×T ∪T ×P → N0 describing
the number of edges from a place to a transition, or from a transition to a
place. A configuration of a net is called a marking, which is a function
m : P → N0, expressing how many tokens are currently associated with a
place p ∈ P . An initial marking m0 : P → N0 defines the start configuration
of the net. A discrete step of the net consists in a change of the marking.
Possible changes are defined by transitions t ∈ T so that in the current
marking, each p ∈ P carries at least as many tokens as there are edges from p
to t; such a transition is called “enabled” or “firable”. The effect of firing such
a transition is to take away from each place p the number of tokens which
equals the number of edges from p to t, and then to add to each place p the
number of tokens which equals the number of edges from t to p.

For each transition t, a place p so that E(p, t) �= 0 is called a pre-place
of t and a place p so that E(t, p) �= 0 is called a post-place of t. Thus,
firing of a transition t means taking away the number of tokens given by E
from the pre-places of t, and adding the number of tokens given by E to the
post-places of t.

In a place-transition net, places can be considered to model stores of
identical elements of the modelled system, and transitions can naturally be
considered to model processes which take some inputs away from the stores
represented by the pre-places of the transition, process them, and provide
outputs to the post-places of the transition.

Different strategies are possible for determining how global system steps
are computed based on such local steps: (a) Just one of the enabled tran-
sitions might be selected and fired in a global step (this is the “interleaving
dynamics”); or (b) an arbitrary subset of enabled transitions is fired for which

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_14,
© Springer-Verlag Berlin Heidelberg 2005

142 14. An ASM Meta-model for Petri Nets with Timing

there exist enough tokens in the current marking so that they all can be fired
synchronously; or (c) a maximal such set of transitions might be fired. The
latter dynamics is the “maximal progress dynamics”. The dynamics in (a) is
adequate if it is assumed that firing a transition takes very short time and
it is not relevant if the processes modelled by some transitions perform their
work (partially) overlapping. (b) expresses synchronous execution of any set
of transitions so that enough tokens exist in the pre-places of all the transi-
tions in the set, and (c) is a variant of (b) in which each transition is taken as
early as possible, where we must deal with the case that a transition t might
be in (dynamic) conflict with a set of transitions st, i.e., while st might be
fired and t might be fired alone, it might be the case that st∪{t} can not be
fired because there are not enough tokens for all these transitions at once. In
general, the use of variant (c) reduces the nondeterminism of variant (b) quite
considerably, at least in states which admit a large number of non-conflicting
transitions to be taken.

To model a net as an ASM, we assume that the vocabulary contains the
static unary predicates P and T characterizing finite effective sets, a static
binary function E : P × T ∪ T × P → N0; the dynamic state component is
modelled by a dynamic marking function m : P → N0, which is initialized
as the initial marking. The interleaving dynamics is described by the rule in
Fig. 14.1. enabled(t) expresses if a transition t can be taken. If no transi-
tion can be taken, the CHOOSE rule is equivalent to a HALT rule, and if some
transition can be taken, one of the enabled transitions is chosen and the new
values of all places are computed.

InterleavingNetDynamics =def

CHOOSE(t:T):enabled(t) IN
FORALL(p:P) DO
m(p) := m(p) - E(p,t) + E(t,p)

enabled(t) ⇔def ∀(p:P):m(p)≥E(p,t)

Fig. 14.1. A rule capturing the interleaving dynamics of a discrete place-transition
net.

The maximal progress dynamics is described by rule MaximalProgress-
NetDynamics in Fig. 14.2. P determines the power set of its argument pred-
icate, understood as a set; setEnabled(st), for a set of transitions st, is a
derived function which determines if there are transitions in st and if they can
be fired synchronously in the current state; and the

∑
-terms are short-hand

notations for derived functions with a place parameter p and a transition set
parameter st which determine the number of edges from p into transitions
in st or vice versa.

14.2 Quantitatively Timed Nets 143

MaximalProgressNetDynamics =def

CHOOSE(st ∈ P(T)):maximalSetEnabled(st) IN
FORALL(p:P) DO
m(p) := m(p) -

∑
t∈st

E(p,t) +
∑

t∈st
E(t,p)

setEnabled(st) ⇔def

st �= {} ∧ ∀(p:P):m(p)≥ ∑
t∈st

E(p,t)

maximalSetEnabled(st) ⇔def

∧ setEnabled(st)
∧ ¬∃(st1 ∈ P(T)):

∧ setEnabled(st1)
∧ st⊆st1
∧ st1�=st

Fig. 14.2. A rule capturing the maximal progress dynamics of a discrete place-
transition net.

14.2 Quantitatively Timed Nets

Several approaches exist for extending discrete nets with the possibility of
modelling properties of systems which involve quantitative time. Two well-
known examples are the timed Petri nets of Ramchandani [Ram74] and the
time Petri nets of Merlin and Farber [MF76]. We will investigate these two
models in some depth. In both approaches, quantitative times are associated
with the transitions of a place-transition net.

In the model of Ramchandani, time is assumed to pass between the mo-
ment in which the tokens are taken away from the pre-places and the moment
in which they are added to the post-places. The net variant is called “timed
Petri nets”. In this approach a transition models nicely a process which, when
started, synchronously takes away its inputs from their respective stores,
then needs some time for computing the results, and finally provides syn-
chronously its outputs to their respective stores. Normally, it is assumed that
the time needed by the process is given by a single number, which models
that it is fairly exactly known what time the modelled process needs. Popova-
Zeugmann and Heiner [HPZ97] present a variant in which a non-empty inter-
val of the non-negative rational numbers is used instead; this models explicitly
that knowledge is missing about the precise time the process might take after
its start, but that there is a minimal time and a maximal time so that it is
known that the processes need a time between these two times.

The model of Merlin and Farber is based on another basic idea. Some
processes can be assumed to perform their work (almost) instantaneously,
but they need time before they notice that they may work. An example is
used in the original paper [MF76]: Merlin and Farber use their model to
express a watch-dog mechanism in a communication protocol. Formally, each
transition is associated with an interval of the non-negative real numbers.

144 14. An ASM Meta-model for Petri Nets with Timing

When a Merlin-Farber transition starts to be enabled, a timer associated with
it starts running, but the tokens in the pre-places stay untouched. As soon as
the timer value is in the interval, the transition may fire; and as soon as the
timer value is equal to the upper bound of the interval, the transition must
fire. Variants allow ∞ as upper value of the interval, or restrict the interval
boundaries to rational numbers. This approach to adding quantitative time
to Petri nets is normally called “time Petri nets”. Analysis techniques for this
kind of nets are described in [Pop91], [BD91] and [DS94].

Felder et al. [FMM94, p. 132f] distinguish several semantical variants for
the time interval which might be associated with a transition in a Merlin-
Farber net. The original paper of Merlin and Farber is not entirely clear,
and Felder et al.’s method is to use an axiomatization in the temporal logic
TRIO to make explicit their interpretational decisions. We cite some of the
possibilities here:

– Felder et al. distinguish a strong time semantics and a weak time semantics.
They differ with respect to interpretation of the upper time bound. Strong
time semantics is as described above: If the upper time bound is reached
for a transition, the transition must fire; weak time semantics means: If the
transition fires, the waiting time is between the lower and the upper time
bound; but it is not required to fire. In the present work, we use a strong
time semantics.

– The number of waiting processes associated with an enabled transition
might be restricted to one, or it might be allowed that several such processes
are running at once if there are enough tokens in the pre-places so that a
transition is enabled multiple times. In the latter case, each token in a pre-
place of a transition is associated with at most one process of the transition.
In the present work, we use a single-process semantics.

– One might allow simultaneous firings of several transitions or not; and
when it is allowed, it might also happen that the same transition fires
simultaneously several times (because several of its processes might fire
at the same moment). If zero-time transitions are allowed, there might be
several firings at the same point in real time, some of which might depend
causally on earliers, i.e., they happen at the same point in real time, but in
some fixed order. In the present work, we will describe both an interleaving
semantics without simultaneous firings, and a maximal progress semantics
with simultaneous firings.

– As upper time bound, typically ∞ belongs to the allowed values. Two
interpretations for this are discussed by Felder et al.: One might be that
the transition might wait as long as it wants before it fires, but that it must
fire at some point in time. The other interpretation is that the transition
might not fire at all. In the present work, we use the second interpretation.

Time Petri nets can be used to model timed Petri nets, by modelling
the start and the end of each transition of the timed net by firing distinct
transitions of the time net, where the first is associated with an interval of

14.3 STASM Models of Doubly Timed Nets 145

the form [0, 0] and the second by a point interval expressing the duration
of the work of the modelled process. Two new further places for each timed
transition to be simulated are used to model the state of the transition, i.e.,
if it is currently working or not, and the function E is defined for these
new places so that the start transition can only be fired if the transition is
currently passive. Note that in this simulation, one process of the original
application is modelled by several transitions and additional places of the
time net.

14.3 STASM Models of Doubly Timed Nets

We propose to model both time Petri nets and timed Petri nets in common
ASM models. We start with an STASM model. We do not use the encoding of
timed Petri nets by time Petri nets described above, but we express directly
both the reaction time (from time Petri nets) and the working time (from
timed Petri nets) in one model. This will allow us to model one process by
one transition and express explicitly in the model which times are to be
understood as reaction times and which are to be understood as working
times of the process; thus, as is consistent with the main raison d’être of
ASMs, we avoid complex encodings of the real-world entities which we want
to model. We will call the net type “doubly timed nets”.

In order to be able to describe the additional static structure of a doubly
timed net, we extend the static vocabulary of the ASM model of discrete
nets described above with four functions from transitions to the reals: two
functions for the lower bound and the upper bound for the reaction time of
the transition (reactionTimeLB and reactionTimeUB), and two functions for
the lower bound and the upper bound for the working time of the transition
(workingTimeLB and workingTimeUB), where we assume that for each transi-
tion, the upper bound is not smaller than the corresponding lower bound. In
addition to the reals, we allow a value ∞ as upper bound, which is assumed
to be larger than any real.

The dynamic state of discrete nets is represented by the marking alone.
This does not suffice any longer, since we have to represent the reaction
time or the working time which has passed so far. We use two dynamic
functions enabledSince and workingSince from T to R

+
0 ∪ {⊥}. A value of

⊥ means that the transition is not currently in the respective state, i.e., it
is not currently waiting for the reaction time to finish or it is not currently
working. In each moment and for all transitions, at most one of these two
functions has a value unequal from ⊥. In the start state, enabledSince(t) is
0 for transitions t which are initially enabled, and is ⊥ for other transitions,
and workingSince(t) starts with a value of ⊥ for all transitions.

14.3.1 An Interleaving Dynamics for Doubly Timed Nets

The STASM rule InterleavingTimeNetDynamics in Figures 14.3 and 14.4
expresses an interleaving dynamics of doubly timed nets. If there is an urgent

146 14. An ASM Meta-model for Petri Nets with Timing

InterleavingTimeNetDynamics =def

IF (∃(t:T):mustStartWork(t) ∨ mustStopWork(t))
THEN DoDiscreteStep
ELIF (∃(t:T):canStartWork(t) ∨ canStopWork(t))
THEN OR DoDiscreteStep

OR SKIP
ELSE SKIP

canStartWork(t) ⇔def

∧ now - enabledSince(t) ≥ reactionTimeLB(t)
∧ now - enabledSince(t) ≤ reactionTimeUB(t)

mustStartWork(t) ⇔def

now - enabledSince(t) = reactionTimeUB(t)

canStopWork(t) ⇔def

∧ now - workingSince(t) ≥ workingTimeLB(t)
∧ now - workingSince(t) ≤ workingTimeUB(t)

mustStopWork(t) ⇔def

now - workingSince(t) = workingTimeUB(t)

Fig. 14.3. An STASM rule capturing the interleaving dynamics of a doubly timed
net (part 1).

transition (i.e., a transition which must start or stop work immediately), a
discrete transition is taken. Otherwise, if some transition can be taken, it is
decided nondeterministically if a discrete step is performed or time is allowed
to pass; and finally, if no transition can be taken, time passes.

In the definition of the predicates which describe if a transition can or
must start or stop work, we use the convention that the predicates ≥ and ≤
yield false if at least one argument is ⊥, and the subtraction function yields
⊥ if at least one argument is ⊥; thus, we do not have to deal with the case
of an undefined enabling- or working-time with a special sub-term.

Figure 14.4 contains the definition of the rule DoDiscreteStep which de-
scribes what happens in a discrete step. It is only called if there is a transition
which can start or stop to work. This means that the initial CHOOSE statement
will find a binding for t. The IF statement distinguishes the two cases: start
resp. stop of work.

If transition t starts a working phase, its enabledSince time is reset to
undefined, workingSince is set to the current time, the marking is updated
for all places, and for all transitions t1 different from t, it is checked if it is
disabled by the transition t being taken. This is only the case if currently, t1
is not disabled, but with the new marking, there is a pre-place p of t1 which
does not carry enough tokens.

If transition t stops a working phase, its workingSince time is reset and
the marking is updated. Then, for all transitions t1, including t itself, it is

14.3 STASM Models of Doubly Timed Nets 147

DoDiscreteStep =def

CHOOSE(t:T):canStartWork(t) ∨ canStopWork(t) IN
IF canStartWork(t)
THEN
|| enabledSince(t) := ⊥
|| workingSince(t) := now
|| FORALL(p:P) DO m(p) := m(p)-E(p,t)
|| FORALL(t1:T):t1�=t DO

IF ∧ enabledSince(t1)�=⊥
∧ (∃(p:P):m(p)-E(p,t)<E(p,t1))

THEN enabledSince(t1) := ⊥
ELSE SKIP

ELSE
|| workingSince(t) := ⊥
|| FORALL(p:P) DO m(p) := m(p)+E(p,t)
|| FORALL(t1:T) DO

IF ∧ enabledSince(t1)=⊥
∧ (∀(p:P):m(p)+E(p,t)≥E(p,t1))

THEN enabledSince(t1) := now
ELSE SKIP

Fig. 14.4. An STASM rule capturing the interleaving dynamics of a doubly timed
net (part 2).

checked if with the new tokens produced by t finishing its work, t1 switches
from disabled to enabled. This is the case if currently, enabledSince(t1) is
undefined, but with the marking in the next state, all pre-places of t1 have
enough tokens for t1 to be taken. In this case, the enabledSince time of t1
is set to the current time, which is equal to that of the next state since a
discrete step is done.

14.3.2 A Maximal Progress Dynamics for Doubly Timed Nets

The dynamics described in Figures 14.3 and 14.4 is based on interleaving.
A maximal progress rule can also be given, again assuming that we have
sets of transitions in the universe, together with the relevant operations on
sets. Figures 14.5 and 14.6 present a rule which describes a maximal progress
strategy. In each step, a set of transitions which can start work is selected
which is maximal relative to the transitions which must start work; this means
that a transition which must start work is only omitted from this set if the
union would not be synchronously firable. Additionally and in the same step,
a set of transitions is selected which can stop their work, and which contains
all transitions which must stop their work. This rule does not select maximal
sets of transitions of those which can start or finish their work, since this
would imply that a transition becomes urgent as soon as it becomes enabled,
which contradicts the idea behind the lower bounds on reaction time and
working time. Rather, maximality is enforced only with respect to urgent
transitions.

148 14. An ASM Meta-model for Petri Nets with Timing

MaxTimeNetDynamics =def

CHOOSE(st1:P(T)):maxStartWork(st1) IN
CHOOSE(st2:P(T)):maxStopWork(st2) IN
IF st1 ∪ st2 = {} THEN SKIP
ELSE
|| FORALL(p:P) DO

m(p) := nextMarking(p,st1,st2)
|| FORALL(t:T) DO

IF t ∈ st1 THEN workingSince(t) := now
ELIF t ∈ st2 THEN workingSince(t) := ⊥
ELSE SKIP

|| FORALL(t:T) DO
IF t ∈ st1 THEN enabledSince(t) := ⊥
ELIF ∧ enabledSince(t)=⊥

∧ nextMarkingEnabled(t,st1,st2)
THEN enabledSince(t) := now
ELIF ∧ enabledSince(t) �= ⊥

∧ NOT halfNextMarkingEnabled(t,st1)
THEN IF nextMarkingEnabled(t,st1,st2)

THEN enabledSince(t) := now
ELSE enabledSince(t) := ⊥

ELSE SKIP

Fig. 14.5. An STASM rule capturing the maximal progress dynamics of a doubly
timed net (without derived functions).

If the union of the transitions for which some discrete step is to be per-
formed is empty, just a SKIP is performed, which means that time may flow.
Otherwise, three statements are performed in parallel. The first updates the
marking of the places; the second updates the workingSince-values for the
transitions which start or stop working. The third is responsible for com-
puting necessary changes of the enabledSince-times for all transitions. For
transitions which start work, the time is reset to the undefined value; for
transitions which are currently not enabled but are after the current step,
this value is set to the current time; and for transitions which are currently
enabled, but are disabled by the next half-step (where we assume that first,
the tokens of started transitions are taken away, and then, the tokens of
stopped transitions are added; other alternatives exist, and no alternative is
the obviously best choice, so our decision might be called arbitrary), it is
checked if they are enabled after the next full step: If they are, the value is
set to the current time; otherwise, it is undefined.

The derived functions in Fig. 14.6 describe important conditions and func-
tions. maxStartWork defines, for a set of transitions, if they can start working
together in a maximal progress dynamics. canStartWorkTogether defines,
for a set of transitions, if there are enough tokens in the places so that all
transitions can be fired synchronously. maxStopWork is the analogue of maxS-
tartWork for stopping work. nextMarkingEnabled checks, for a transition

14.3 STASM Models of Doubly Timed Nets 149

maxStartWork(st) ⇔def

∧ st ⊆ T
∧ canStartWorkTogether(st)
∧ ∀(t:T):

mustStartWork(t)
→

(t ∈ st ∨ ¬ canStartWorkTogether(st ∪ {t})

canStartWorkTogether(st) ⇔def

∧ ∀(t:st):canStartWork(t)
∧ ∀(p:P):∑

t:st
E(p, t) ≤ m(p)

maxStopWork(st) ⇔def

∧ st ⊆ T
∧ ∀(t:st):canStopWork(t)
∧ ∀(t:T): mustStopWork(t) → (t ∈ st)

nextMarkingEnabled(t1,st1,st2) ⇔def

∀(p:P):m(p) -
∑

t∈st1
E(p,t) +

∑
t∈st2

E(t,p) ≥ E(p,t1)

halfNextMarkingEnabled(t1,st1) ⇔def

∀(p:P):m(p) -
∑

t∈st1
E(p,t) ≥ E(p,t1)

Fig. 14.6. Derived functions of the STASM rule capturing a maximal progress
dynamics of a time net.

t1, a set st1 of transitions which start work and a set st2 of transitions
which stop work, if t1 will be enabled after the transition. halfNextMarkin-
gEnabled determines, for a transition t1 and a set st1 of transitions, if after
taking away the tokens needed by the transitions in st1 from the current
marking, t1 is enabled or not.

14.3.3 Discussion of the STASM Models of Doubly Timed Nets

Note that the semantics of Ramchandani nets can be recovered by requiring
that both the lower and upper bound for the reaction times of all transitions
is zero, and that the lower and upper bound of the working time are equal
for all transitions. The semantics of Merlin-Farber nets can be recovered
by requiring that the lower and upper bounds of the working time for all
transitions are zero.

Both variants of dynamics of doubly timed nets assume that at any one
time at most one instance of a transition is working (or is computing its
reaction time). A variant would be to instantiate several reaction time pro-
cesses, as many as are allowed by the current marking, and to allow several
instantiations of the working process.

One might ask if the two dynamics are essentially equivalent, in the sense
that whatever can happen in a run of one dynamics can be simulated by a
run of the other dynamics. A possible understanding of ‘simulation’ might be

150 14. An ASM Meta-model for Petri Nets with Timing

t1: 1,1/0,0

t2: 1,1/0,0

t3: 2,2/0,0

Fig. 14.7. A doubly timed net for which interleaving dynamics and maximal
progress dynamics are essentially different.

to allow that what happens in one run in a maximal sub-sequence of discrete
steps happens in the other run in a maximal sub-sequence of discrete steps.
In this case, the runs would just differ with respect to the refinement of the
discrete steps. But in our case, the two dynamics can differ in an essential way:
There are nets and initial configurations so that the interleaving dynamics
allows some transition to be taken at some time for some resolution of the
nondeterminism, while the maximal progress dynamics does not admit the
same transition to be taken at any time. We look at an example.

Consider the net and marking described in Fig. 14.7. The notation is
partly the customary one for Petri nets: The circle represents a place, which
carries two tokens in the situation represented; transitions are represented by
rectangles; and edges are represented by arrows, where a non-existing arrow
means that the weight is 0, an unlabeled arrow represents an edge with weight
1, and an arrow labeled with a natural number represents an edge with the
given weight. We label the transitions with a name and the four times which
are associated with them; first, lower and upper bound for the reaction time
are given, and then, lower and upper bound for the working time are given.
In the example, transitions t1 and t2 have identical behavior: they have a
punctual reaction time of 1 and a working time of 0. Transition t3 has a
punctual reaction time of 2 and also a working time of 0.

Configurations of the system are concisely represented as 8-tuples; we use
semicola for making them more readable. Configuration (x0, x1; x2, x3, x4;
x5, x6, x7) means that the current timed is x0, the only place carries x1 tokens,
the enabledSince-times of t1, t2 and t3 are x2, x3 and x4, respectively, and
their workingSince-times are x5, x6 and x7.

The start configuration of the net given in the figure is (0, 2; 0, 0, 0;
⊥,⊥,⊥). For this net, the maximal progress dynamics can be considered
as deterministic if we ignore differences between runs which only arise from

14.3 STASM Models of Doubly Timed Nets 151

(0, 2; 0, 0, 0;⊥,⊥,⊥)
↓ 1

(1, 2; 0, 0, 0;⊥,⊥,⊥)
↓ ({t1, t2}, {})

(1, 0;⊥,⊥,⊥; 1, 1,⊥)
↓ ({}, {t1, t2})

(1, 2; 1, 1, 1;⊥,⊥,⊥)
↓ 1

(2, 2; 1, 1, 1;⊥,⊥,⊥)
...

Fig. 14.8. Start of the configuration sequence of the net in Fig. 14.7 with a maximal
progress dynamics.

splitting a time step into several time steps, or by unifying neighbouring time
steps. The configuration sequence in Fig. 14.8 is the only possible, where steps
labeled with reals represent time steps of the given length, and steps labeled
with pairs of transition sets represent discrete actions in which the transitions
in the first set start working, and transitions in the second set stop working.
The behavior repeats after the first three steps, which means that transition
t3 is never fired: it is always preempted by the common firing of transitions
t1 and t2.

Figure 14.9 is the start of a configuration sequence admitted by the inter-
leaving dynamics. This system is not deterministic, and while there are se-
quences of transitions which together mimic the effect of the maximal progress

(0, 2; 0, 0, 0;⊥,⊥,⊥)
↓ 1

(1, 2; 0, 0, 0;⊥,⊥,⊥)
↓ ({t1}, {})

(1, 1;⊥, 0, 0; 1,⊥,⊥)
↓ ({}, {t1})

(1, 2; 1, 0, 0;⊥,⊥,⊥)
↓ ({t2}, {})

(1, 1; 1,⊥, 0;⊥, 1,⊥)
↓ ({}, {t2})

(1, 2; 1, 1, 0;⊥,⊥,⊥)
↓ 1

(2, 2; 1, 1, 0;⊥,⊥,⊥)
↓ ({t3}, {})

(2, 1; 1, 1,⊥;⊥,⊥, 2)
↓ ({}, {t3})

(2, 2; 1, 1, 2;⊥,⊥,⊥)

Fig. 14.9. Start of a configuration sequence of the net in Fig. 14.7 with an inter-
leaving dynamics.

152 14. An ASM Meta-model for Petri Nets with Timing

dynamics (if we allow action refinement, i.e., what happens in one discrete
step in the maximal progress dynamics is allowed to happen in a finite se-
quence of discrete steps in the interleaving dynamics), there are also runs
for which no similar run of the maximal progress dynamics exist, e.g., runs
in which t3 is fired. This is possible because t1 and t2, which do their work
earlier than t3, might take turns, in which case there are always enough to-
kens in the place so that t3 does not become disabled, and, thus, after 2 time
units, t3 can be fired.

This illustrates that if semantics for timed Petri nets are investigated,
details like that when exactly an enabling time is reset can be very important;
this has not been defined unambiguously in the original definition of timed
Petri nets by Merlin and Farber.

14.4 Comparison of STASM and NTASM Semantics

The rules given as descriptions of the dynamics of doubly timed Petri nets are
in general not well-behaved. For example, punctual reaction times and punc-
tual working times can in general not be simulated by the NTASM system
based on the same rules. We will now investigate this phenomenon.

14.4.1 Well-Behavedness of the Interleaving Dynamics Rule
for Doubly Timed Petri Nets

While the interleaving dynamics rule for doubly timed Petri nets seems intu-
itively adequate, there is a drawback for implementability: It does not admit
infinitesimal discretization:

Proposition 14.4.1. Let R be the rule of Figures 14.3 and 14.4. Rule R is
not well-behaved for the start state of all doubly timed Petri nets.

Proof. The main problem are punctual reaction times or working times. Con-
sider once again the net from Fig. 14.7. Transitions t1 and t2 must both be
started taken exactly at time 1, but in the infinitesimal discretization, this is
only possible for at most one of the transitions, and if the infinitesimal step
width divides 1.

The fact stated in the last proposition hints to a way to classify doubly
timed Petri nets as well-behaved or not, by looking at the interpreting ASM
rule and the start state defined by the doubly timed Petri net under consid-
eration. Obviously, punctuality requirements of the doubly timed Petri net
lead to non-well-behaved systems. Let us consider systems in which all reac-
tion time intervals and all working time intervals are non-punctual. Does this
suffice to ensure that the resulting system is well-behaved? It does not:

Proposition 14.4.2. Let R be the rule of Figures 14.3 and 14.4. Rule R
is not necessarily well-behaved for the start state of a standard doubly timed
Petri net in which the intervals defining possible reaction times and working
times are all non-punctual.

14.4 Comparison of STASM and NTASM Semantics 153

t1: 0,1/0,1

t2: 1,2/0,1

Fig. 14.10. A non-punctual doubly timed Petri net which is not well-behaved.

Proof. Consider the doubly timed Petri net of Fig. 14.10. An STASM run
of this net can start with a time step of one time unit length, followed by
transition t2 starting to work, and this followed by transition t1 starting to
work. Now consider an NTASM with a step with dt which does not divide
1. The earliest time at which t2 can start work is dt ∗ � 1

dt
�, which, by the

condition on dt, is strictly larger than 1. But this is too late for t1 to start
work. Thus, the described standard run can not be mimicked by an NTASM
run independently from the choice of the infinitesimal step width.

The counter-example to well-behavedness given in the last proof can be traced
back to the phenomenon that a state is reachable by a standard run – in
this case, it is the initial state – in which the two future “event windows”
overlap, but in just one point. This leads us to a sufficient condition on well-
behavedness for doubly timed Petri nets.

We will use the following strategy: Consider a standard STASM run
with finite activity. We will construct a simulating run of the correspond-
ing NTASM from this, and discover in doing so a sufficient condition for this
to be possible.

(1) We can associate, with each state q of the run, a set of next possible
discrete events E(q), i.e., transitions starting or stopping to work. For each
transition currently enabled, there is an interval of time when it can start its
work, and for each transition currently working, there is an interval of time
when it can stop work. These intervals are called the “execution windows”
I(e) of the associated events e ∈ E(q). Note that an enabled transition might
be disabled before it starts work, i.e., for these events, it is not really ensured
that they are taken in this run.

(2) We restrict our attention to standard states reachable by standard
STASM runs in which no event is urgent, i.e., in which time may be spent.
Let us fix such a state q. If there are no events associated with this state, the
system can only let time pass. Otherwise, we can single out an event eq with
a minimal upper bound of the associated execution window I(eq).

(3) We now require from the system, and this is the sufficient condition
for well-behavedness, that the intersection of eq’s window with the window of
any other event e′ waiting currently for execution is no point interval (i.e., is

154 14. An ASM Meta-model for Petri Nets with Timing

either empty, which implies that the window of e′ starts later than when the
window of e ends, or the intersection is an interval of strictly positive length).
We now investigate why this condition suffices for well-behavedness.

(4) Since there are only finitely many transitions in a doubly timed Petri
net, there are only finitely many events and associated windows, and the
intersection of the window of e with the windows of all events with which the
intersection is not empty is again no point interval. Let us call this non-empty
result of the intersection Iq .

(5) Consider a standard, finite activity STASM run of a doubly timed
Petri net. As any STASM run, it consists of a sequence of clusters consist-
ing of contiguous discrete events, and these clusters are separated by time
transitions. From this run, we construct a simulating run of the associated
NTASM system.

(6) The first step in this construction consists in replacing each time step
of real length l in the run by a sequence of � l

dt
� time steps of length dt, and

by changing each discrete step by incrementing now by dt in it instead of
keeping now constant. If there exists a last infinite time step in the run, it
is replaced by an infinite sequence of dt-length time steps. This translation
yields a run in which now is incremented in each step by dt, but since the
discrete steps necessarily and the time step sequences possibly use more time
than they used in the STASM run, some events might occur too late in this
translation. This has yet to be detected and corrected.

(7) The second step in the construction of a simulating run consists of
this correction. Note that since the original STASM run was assumed to be
standard and have finite activity, the n’th cluster for all standard n only
contains a standard natural number of discrete transitions, and it is preceded
by a standard number of time transitions. Altogether, this implies that each
event takes place at most an infinitesimal later in the translated run than
in the original run. We now correct the position of each nth cluster (for all
standard n), if necessary. We can classify the events in a cluster into two sets:

(7.i) One set consists of events which became possible because some pre-
vious event in the cluster has taken place; these can be transitions starting to
work with a lower bound for reaction time of zero, and transitions stopping
to work with a working time of zero. For these transitions, the infinitesimal
delay can be no problem, since each positive infinitesimal lies in the execution
window of the event, which is assumed to have strictly positive length.

(7.ii) The other set consists of events with a preparation time which was
already running since the start of the time transition preceding the cluster.
This set might contain events which now are delayed unduly. If it does not,
we are ready with this cluster; if there are unduly delayed events, we move so
many dt-step time transitions from the sequence of time transitions in front
of the cluster to the sequence of time transitions behind the cluster that no
event is unduly delayed after this change. This operation moves the current
cluster a bit into the direction of the beginning of the run, an infinitesimal

14.4 Comparison of STASM and NTASM Semantics 155

which is just enough so that all events in the cluster take place not later
than in the corresponding STASM run. A consequence might be that by
this operation, events in later clusters might have become unduly delayed by
another infinitesimal; but this will be taken care of when we deal with the
later cluster.

(8) We only have to show that by the operation last described, the clus-
ter can not move so much that afterward, some events in it take place too
early. This can not happen because the intersection of execution windows has
standard non-zero length, which is larger than any infinitesimal, and because
the expanded cluster has also only infinitesimal length. Moving the expanded
cluster of discrete transitions in the direction of the beginning by an infinites-
imal can not move it out of the intersection of execution windows at the left
end if before the move, the cluster touched the right end. But the latter is
ensured because the right end must be touched if there was an event in the
cluster which took place too late, which is the precondition for the cluster
being moved.

We conclude:

Proposition 14.4.3. Let R be the rule of Figures 14.3 and 14.4, and fix a
doubly timed Petri net which is encoded by the initial state. This defines an
STASM. Let At be the set of states which is reachable by a standard finite run
of the STASM. If, for all q ∈ At, the intersection of the execution window
of an event with a minimal upper bound with any other execution window
associated with q does not form a point interval, R is well-behaved for the
start state defined by the doubly timed Petri net under consideration.

14.4.2 A Well-Behaved Rule for Interleaving Dynamics
of Doubly Timed Petri Nets

As before, we will restrict ourselves to the investigation of the interleaving
rule; the arising phenomena would be similar for the maximal progress rule.
We investigate a variant of the rule given in Figures 14.3 and 14.4 which
differs from the original rule with respect to the definition of the derived
predicates which specify when a transition can or must start or stop work.
We use the definitions in Fig. 14.11.

The difference between the original definitions and the currently investi-
gated ones are the following: (a) The can-functions only consider the lower
bound, i.e., a transition can start or stop work if it has it has waited or
worked long enough, and it does not matter any longer if he maximal wait-
ing or working time has already come. (b) The must-functions do not check
for equality of the time passed since waiting or working started; it is also
acceptable if more time has passed.

The idea behind these changes is the following: Infinitesimal discretization
of time means that in general, the rule can not fulfill punctual requirements;
thus, we have to admit some error. We use the strategy to admit that in the

156 14. An ASM Meta-model for Petri Nets with Timing

canStartWork(t) ⇔def

now - enabledSince(t) ≥ reactionTimeLB(t)

mustStartWork(t) ⇔def

now - enabledSince(t) ≥ reactionTimeUB(t)

canStopWork(t) ⇔def

now - workingSince(t) ≥ workingTimeLB(t)

mustStopWork(t) ⇔def

now - workingSince(t) ≥ workingTimeUB(t)

Fig. 14.11. Definitions of derived predicates of a well-behaved rule capturing an
interleaving dynamics of a doubly timed net.

NTASM system, the steps happen an infinitesimal later than the correspond-
ing steps in the STASM dynamics. Note that the STASM interpretations of
the original rule and of the variant define the same runs:

Proposition 14.4.4. Let R be the rule of Figures 14.3 and 14.4, and let R′

be the variant rule with the definitions of Fig. 14.11. For definitions of static
symbols and of initial conditions for doubly timed Petri nets, the runs of [[R]]h

and [[R′]]h are the same.

Proof. (I) Consider a run of [[R]]h from the start state. (a) The discrete steps
consist of some transition t starting or stopping to work. If in some state, [[R]]h

allows t to start or stop work, also [[R′]]h allows this (since the can-conditions
are weaker in R′ than in R). (b) And if, in some state, the STASM semantics
of R admits a time transition of some length, i.e., no transitions becomes
urgent during that time, the same is true for the STASM semantics of R
from that state, since the states in which a transition is urgent with respect
to R′ but not with respect to R can not be reached by a discrete transition,
and by a time transition from a reachable state it could only be reached
from another state in which the transition was already urgent, which can
not happen because of the urgency, which means that these states are not
reachable in a run of [[R′]]h. (c) Thus, each R-run is also an R′-run.

(II) Conversely, consider a run of [[R′]]h from the start state. (a) Here, too,
the discrete steps consist of some transition t starting or stopping to work;
but there are states in which R′ admits a discrete step in which R does not
admit it, namely: if the upper bound of the time for the transition to take
place has passed. But since these states are not reachable (such a state can
not be reached by a discrete step, and before such a state could be reached
by a time step, the transition would become urgent), this is irrelevant. (b)
If, in some state, the STASM semantics of R′ admits a time step of some
length, i.e., no transition becomes urgent for this time, the same is true for
the STASM semantics of R, since the states in which a transition is urgent

14.4 Comparison of STASM and NTASM Semantics 157

for R is a subset of the states in which a transition is urgent for R′; just
compare the definition of the must-predicates. (c) Thus, each R′-run is also
an R-run.

Thus, if considered as defining STASM systems, the original rule R and
the variant R′ define the same system, since states in which the values of [[R]]h

and [[R′]]h differ are not reachable by either system. The nice thing about rule
R′ is that it admits infinitesimal discretization, or more exactly:

Proposition 14.4.5. Rule R′ as defined in Proposition 14.4.4 is well-behaved
for the start state of a doubly timed Petri net.

Proof. We have to show that for a standard run of [[R′]]h from the start state,
there is a simulating run of [[R′||now:=now+dt]] from the start state. This proof
is a bit lengthy and technical, so we provide it with further structure. Part
(A) presents the main idea, to show the existence of a specific predicate on
state pairs, part (B) shows why this existence suffices, and part (C) presents
a predicate as needed.

(A) We consider a predicate q � r on states q and r with the following
properties:

– For standard states q, q � q.
– For states q, r with q � r, q standard, each standard step of [[R′]]h from

q to a (necessarily standard) q′ can be mimicked by a (possibly empty)
sequence of steps of [[R′||now:=now+dt]] from r, leading to r′, with q′ � r′.

(B) If a predicate � as in (A) exists, then R′ is well-behaved.
We show this by a standard induction on the number of actions in the

standard run, in two steps, (B.i) and (B.ii)
(B.i) We show: For each standard n ∈ N0, if there is a standard run of

[[R′]]h with n actions from the (standard) start state (which we call q0) leading
to a state q, there is a simulating run of [[R′||now:=now+dt]] from q0 leading
to a state r with q � r. Case n = 0: q0 � q0 holds obviously. Case n > 0, n
standard: Assume that q (resp. r) is the final state of any (n−1)-action run
of the STASM system (resp, the final state of a simulating run of the NTASM
system), fulfilling q � r. This exists by the induction assumption. For each
standard STASM step from q to a state q′, there exists, by definition of �, a
mimicking sequence of NTASM steps from r to a state r′ so that q′ � r′.

(B.ii) If each finite standard STASM run can be mimicked by an NTASM
run, this is also true for infinite standard runs for the steps with standard
numbers. Indeed, if there was an infinite standard run in which some step
with a standard position can not be simulated, there would be a first such
position n ∈ N, which can not be the case because of the induction of (B.i).

(C) Consider � as defined by

158 14. An ASM Meta-model for Petri Nets with Timing

q � r ⇔def

∧ q standard
∧ d(q, r) � 0
∧ q reachable by [[R′]]h from the start state
∧ ∀(p ∈ P) : q(m(p)) = r(m(p))
∧ ∀(t ∈ T) : q(enabledSince(t)) �=⊥

→
∧ r(enabledSince(t)) �=⊥
∧ q(now - enabledSince(t)) ≤ r(now - enabledSince(t))

∧ ∀(t ∈ T) : q(workingSince(t)) �=⊥
→
∧ r(workingSince(t)) �=⊥
∧ q(now - workingSince(t)) ≤ r(now - workingSince(t))

The most interesting consequence probably is that the time which has passed
since a transition started its reaction time or its work might be an infinitesimal
longer in r than in q. This is because we have to allow that the infinitesimal
discretization might come an infinitesimal too late.

We claim: This predicate fulfills the conditions of (A). Together with (B),
this implies that R′ is well-behaved.

(C.i) Assume that the STASM system admits a standard discrete step
a from q. a represents a transition t starting or stopping to work. Let us
consider the first case and the second case in that order. (C.i.a) If t can start
work in q by an STASM step, t can also start work in a state r with q�r. This
start is represented by an action a′ so that d(a, a′) � 0 and for the reached
states q′ and r′, q′ � r′ holds:

– If q and a are standard, then q′ = q[a] is standard.
– d(q, r) � 0 and d(a, a′) � 0 implies d(q[a], r[a′]) = d(q′, r′) � 0.
– If q is reachable in the STASM system, also q[a] is reachable.
– The (initially identical) markings of q and r are changed in an identical

way.
– Starting t can at most disable some t′ ∈ T , i.e., the condition on
enabledSince is not falsified.

– In the transitions, workingSince changes only for t, and in the follower
states we have
q′(now - workingSince(t)) = 0 and r′(now - workingSince(t)) = dt.

This completes the proof for the case that a represents a start of work of a
transition.

(C.i.b) If t can stop work in state q, the reasoning is similar to the previous
case, only for newly enabled t′ ∈ T , q′(now - enabledSince(t′)) = 0 and
r′(now - enabledSince(t′)) = dt, and workingSince is only changed, for
t, to undefined. This completes the proof for the case that a represents a stop
of work of a transition.

14.5 Summary 159

(C.ii) Assume that the STASM system admits a standard time step of
length l from q, i.e., for all l′ with 0 ≤ l′ < l, υ ∈ [[R′]](q[now:=now+l′]), or: for
no t ∈ T , t must start or stop work in these states. We call such a transition
“urgent”. Let us consider the start case; the stop case is similar.

(C.ii.a) If, after time l waiting from state q, no transition is urgent, the
same is true for time l+δ for an infinitesimal δ ≥ 0. Thus, [[R′||now:=now+dt]]
can do � l

dt� time steps from r, the two behaviors leading to states q′ and r′

with q′ � r′.
(C.ii.b) If after time l, some non-empty set T ′ of transitions become ur-

gent, the NTASM can do n = �maxt∈T ′ (r(x(t))−q(x(t)))

dt � time steps from r,
where x(t) is the term now-enabledSince(t) for transitions t which must
start work, and x(t) is the term now-workingSince(t) for transitions t which
must stop work after time l has passed starting in state q. Obviously, n∗dt � l,
i.e., the sequence of n NTASM steps simulates the STASM time step, and for
the reached states q′ and r′, q′ � r′ holds.

14.5 Summary

In this chapter, we present an NTASM-based meta-model for two kinds of
timing-enhanced Petri net formalisms. Our approach helps to work out the
details of semantics which partly stayed implicit or ambiguous in the original
papers, and it allows us to combine the ideas quite easily into one formalism,
making the difference between the concepts explicit. Finally, it is shown that
the definition well-behavedness can be lifted from our base formalism via our
operational semantics to timing-enhanced Petri nets; this means that we can
classify timing-enhanced Petri nets with respect to their being suited to the
discretization necessary for practical implementation.

15. An ASM Meta-model

for Timed and Hybrid Automata

Timed and hybrid automata are formalisms for the description of real-time
systems which are designed primarily to make algorithmic analysis possible
[ACD93, AD94, ACH+95]. Both formalisms are based on the following ideas:

– Each system component which can change both discretely and continuously
is modelled by a real-valued variable.

– The different control states of the system are modelled by a finite set. Each
of the states in this finite set is associated with an invariance predicate over
the continuous variables, and with a predicate restricting possible changes
of these variables with respect to time. The time change predicates define
in which way a variable may change during the time when the system is in
a control state, and the invariance defines how long the system may stay in
a control state: The state must be left before or as soon as the invariance
becomes false.

– A transition between two states is labeled with a guard predicate on the
continuous variables, and with a discrete-change predicate involving primed
and non-primed versions of the continuous variables. A transition from one
state to the other may only be taken if the guard is true, and if it is taken,
the continuous variables may change as described by the discrete change
predicate.

– Several such automata can be combined by using CSP-like labels at the
transitions: One transition with a label can only be taken if each parallel
automaton which has the label in its alphabet also performs a transition
with the same label.

In hybrid automata, as predicates for the definition of invariants, derivations,
guards and discrete changes, conjunctions of strict and non-strict inequalities
of linear functions of the continuous variables are allowed. The coefficients
used in the definition of the linear functions of the continuous variables are
required to be integers. Inequalities of linear expressions involving rational
numbers can be converted to an equivalent form with integer coefficients in
the obvious way.

The tool HyTech [HHWT95] allows reachability checks for systems de-
scribed with this formalism. A variant formalism allowing the description of
modules, instantiation and hierarchy has been developed by the author and
a colleague [BR98, BR99, BR00b, BR00a, BR01].

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_15,
© Springer-Verlag Berlin Heidelberg 2005

162 15. An ASM Meta-model for Timed and Hybrid Automata

Timed automata are simpler. In a typical variant, invariants and guards
are conjunctions of strict and non-strict inequalities, where each inequality
compares a variable to a rational number. Derivations of all variables in all
states are always equal to one, i.e., all variables can be considered to be
always controlled by the same clock. The changes implied by a discrete step
consist, for each variable, either in being reset to zero, or in not being changed.
Tools supporting analysis of systems described with this formalism are Kronos
[DOTY96], UppAal [BLL+96] and Rabbit [Bey01].

Since it is the more general concept, we will use the term“hybrid automa-
ton” also for timed automata.

15.1 An STASM Model of Hybrid Automata

We first model a hybrid automaton at a higher abstraction level than it is
done in the original formalism.

Figure 15.1 lists and explains the sub-universes which are used in the
STASM model of hybrid automata. On the abstraction level used here, we do
not define what formulas look like, or how value assignments are represented.
This is in order to give a description abstract enough so that it fits both
timed automata and hybrid automata.

Figure 15.2 lists the dynamic functions of the model, i.e., the state com-
ponents. “active” characterizes the states which are active in a configura-
tion; this will be exactly one state of each automaton. “va” is the value
assignment which was chosen after the last discrete step, “vad” is an as-
signment of derivations to variables chosen after the last discrete step, and

AUTOMATON: the partial automata out of which the whole system is composed
FORMULA: formulas involving variables, for describing invariants, guards and ad-

missible derivations
FORMULA2: formulas involving primed and unprimed variables, for describing ad-

missible discrete changes
TRANS: transitions between states
P(TRANS): sets of transitions between states
STATE: the disjoint union of states of all automata
SYNC: synchronization labels
VA: value assignments to variables

Fig. 15.1. Sub-universes of the STASM expressing the semantics of hybrid au-

tomata.

active: STATE → BOOLEAN
va, vad: VA
last_discrete_step_at: REAL

Fig. 15.2. Dynamic functions.

15.1 An STASM Model of Hybrid Automata 163

from: TRANS → STATE
to: TRANS → STATE
α: AUTOMATON × SYNC → BOOLEAN
automaton_of: TRANS → AUTOMATON
sync: TRANS → SYNC ∪ {⊥}
inv: STATE → FORMULA
der: STATE → FORMULA
guard: TRANS → FORMULA
discrete_step: TRANS → FORMULA2

fulfills: VA × FORMULA → BOOLEAN
fulfills2: VA × VA × FORMULA2 → BOOLEAN
*: REAL × VA → VA
+: VA × VA → VA

Fig. 15.3. Static functions.

cur_va =def

va+(now-last_discrete_step_at)*vad
transition_possible(t,s) ⇔def

∧ sync(t)=s
∧ active(from(t))
∧ fulfills(cur_va, guard(t))

next_va_possible(v,t) ⇔def

∧ fulfills2(cur_va, v, disc_step(t))
∧ fulfills(v, inv(to(t)))

Fig. 15.4. Derived functions.

“last_discrete_step_at” represents the moment of the last discrete step.
Together with “now”, the last three dynamic function allow us to determine
the current value assignment.

Figure 15.3 lists the static functions different from sub-universes. The
first group defines the static structure of the hybrid automaton. “from” and
“to” express the start and end states of transitions. α characterizes for each
automaton if a given synchronization symbol belongs to its alphabet. “au-
tomaton_of” determines to which automaton a transition belongs. “sync”
defines which synchronization symbol a transition carries, or if it does not
carry one (which is expressed by the value ⊥). “inv” describes the invari-
ant associated with a state and “der” the admissible derivations; “guard”
describes the guard of a transition and “discrete_step” describes the pos-
sible changes to variables during a discrete step. The next group of static
functions allow us to work with formulas and value assignments. “fulfills”
is a predicate which describes if a value assignment fulfills a formula. “ful-
fills2”describes if two value assignments fulfill a formula with both primed
and unprimed occurrences of variables, where the second value assignment
argument is used for the interpretation of primed occurrences of variables in

164 15. An ASM Meta-model for Timed and Hybrid Automata

the formula. “*” is used for time intervals and value assignments interpreted
as derivations: if the VA argument expresses the changes to variables in one
time unit, then the result expresses the changes after the number of time
units as given by the REAL argument. “+”, if applied to value assignments,
adds the values component-wise.

In Fig. 15.4, the derived function “cur_va” is defined which repre-
sents the current value assignment. This is the only place where the static
functions “*” and “+” on value assignments are used. The predicate
“transition_possible(t,s)”expresses if transition t can be taken and syn-
chronizes with s, and“next_va_possible(v,t)”defines if v is a possible next
value assignment if transition t is taken.

mainRule:
OR timeRule
OR discreteStepRule

timeRule:
IF ∀(s ∈ STATE) : active(s) → fulfills(cur_va, inv(s))
THEN SKIP
ELSE HALT

discreteStepRule:
|| last_discrete_step_at := now
|| OR unsyncedDiscreteStepRule

OR syncedDiscreteStepRule

Fig. 15.5. The top-level rules defining the dynamics of hybrid automata.

The dynamics of hybrid automata is defined by the rule“mainRule”, which
is defined in Fig. 15.5 and further refined in Fig. 15.6. “mainRule” expresses
that time may flow or a discrete step may be taken, whatever of the alterna-
tives is possible. “timeRule” defines under which conditions time may flow:
SKIP is possible if the invariants of all active states are fulfilled by the current
value assignment. As defined by the STASM semantics of a rule, time may
flow as long as the rule can do a SKIP. If some invariant is not fulfilled by the
current value assignment, the time rule is equivalent to HALT, which means
that the time rule provides no alternative for the possible actions in the cur-
rent configuration, or: that a discrete step must be taken, or if that is not
possible, that the system has reached a time deadlock. “discreteStepRule”
describes what might happen as a discrete step. The time of the discrete step
is recorded in “last_discrete_step_at”, and either an unsynchronized or
a synchronized discrete step is done. Note that if neither an unsynchronized
nor a synchronized discrete step is possible, the effect of the whole rule is
equivalent to HALT, by the semantics of synchronous composition in ASMs.

Figure 15.6 describes the details of the alternatives for discrete steps.
The simpler case is dealt with in “unsyncedDiscreteStepRule”. A possible

15.1 An STASM Model of Hybrid Automata 165

unsyncedDiscreteStepRule:
CHOOSE(t : TRANS) : transition_possible(t,⊥) IN

CHOOSE(v : VA) : next_va_possible(v, t) IN
CHOOSE(d : VA) : fulfills(d, der(to(t))) IN
|| va := v
|| vad := d
|| moveRule(t)

syncedDiscreteStepRule:
CHOOSE(T : P(TRANS))IN

∧ T �= {}
∧ ∀(t, t′ ∈ T) : automaton_of(t) = automaton_of(t′) → t = t′

∧ ∃(s ∈ SYNC) :
∧ ∀(t ∈ T) : transition_possible(t, s)
∧ ∀(a ∈ AUTOMATON) : α(a, s) → ∃(t ∈ T) : a = automaton_of(t)

IN
CHOOSE(v : VA) : (∀(t ∈ T) : next_va_possible(v, t)) IN
CHOOSE(d : VA) : (∀(t ∈ T) : fulfills(d, der(to(t)))) IN
|| va := v
|| vad := d
|| FORALL(t ∈ T) DO moveRule(t)

moveRule(t):
IF from(t) �= to(t)
THEN || active(from(t)) := FALSE

|| active(to(t)) := TRUE
ELSE SKIP

Fig. 15.6. Rules defining the details of the dynamics of hybrid automata.

transition t is chosen which does not carry a synchronization label, a value
assignment v for the values of variables at the start of the phase after the
current discrete step is chosen, and another value assignment is chosen for the
time derivatives. Finally, the state components “va” and “vad” are updated
as necessary, and activity moves from the source state of the transition taken
to the target state, which is expressed by rule “moveRule”.

“syncedDiscreteStepRule” expresses what happens in a synchronized
discrete step. This involves in general not a single transition but several of
them. The first CHOOSE construct selects such a set of transitions; it must be
non-empty and contain at most one transition from each automaton, and they
must all be labeled by the same synchronization label, it must be possible
to take all the transitions, and all automata must participate which have the
synchronization label in their alphabet. Next value assignments for variables
and derivatives are chosen which are admitted by all transitions in the selected
set. After this selection, these values are assigned to va and vad, and the
activity changes associated with all transitions are performed.

“moveRule” expresses what happens to the dynamic predicate “active”
when a transition is taken: If the transition does not lead back to its source
state, the activity moves from the source state to the target state.

166 15. An ASM Meta-model for Timed and Hybrid Automata

15.2 Comments on the Modelling Choices

Time deadlocks. Time deadlocks deserve some comment. If “mainRule”
is equivalent to HALT in some reachable configuration, this means that a
time deadlock is reached. If such a situation is reachable in a model, this is
typically used as a modelling error. In the STASM semantics, we also have
a time deadlock in a configuration c in which the main rule is equivalent to
SKIP, but there is a real numbered ε > 0 so that for all δ with 0 < δ ≤ ε, the
main rule is equivalent to HALT at configuration c[now �→ c(now) + δ], since
this means that no time can flow from configuration c. A helpful analysis
would be to determine if a time deadlock configuration can be reached from
an initial configuration of a hybrid automaton.

Discrete transitions. Note that a discrete step of a hybrid automaton
is only admitted by the given dynamics if the chosen value assignment for
the state reached by the step fulfills the invariants reached. This is encoded
by the conjunct fulfills(v,inv(to(t))) of predicate“next_va_possible”.
An alternative would have been not to use this conjunct. In this case, con-
figurations might be reached in which the conjunction of invariants is not
necessarily fulfilled; in such configurations, time could not be spent, but it
is possible to leave such configurations by an immediately following discrete
step. This would allow us to model urgency of a transition by ensuring that
the guard of such a transition implies the negation of the invariant of the
source state of such a transition.

15.3 Timed Automata and Their Well-Behavedness

In order to investigate the question of well-behavedness, we have to provide
more detail than given before, since the question is easier dealt with for
timed automata than for hybrid automata. The form of invariants, guards,
derivations and discrete step predicates has already been hinted at in the
introduction to this chapter. Now, we will be more precise.

Definition 15.3.1. A timed automaton is a hybrid automaton with the
following restrictions:

– A further sub-universe “Vars” represents the variables.
– All states are associated with the same derivation formula. The derivation

formula of a timed automaton is a conjunction of formulas of the form
x = 1, where for each variable x in the system, there is a conjunct in the
derivation formula.
This means that during time transitions each variable changes its value just
like the time, and different values of variables can only occur by changes
during the discrete transitions.

– A formula describing the change during a discrete step is a conjunction of
the formulas of the form x′ = 0 or x′ = x, where for each variable x, one
such formula occurs in the conjunction.

15.3 Timed Automata and Their Well-Behavedness 167

This means that in a discrete transitions, each variable is either reset to
zero (if x′ = 0 occurs in the formula), or it rests unchanged (if x′ = x
occurs in the formula).

– A formula describing an invariant of a control state or a guard of a transi-
tion is a conjunction of formulas of the form x ≤ c, x < c, c ≤ x or c < x,
where x is a variable and c is a rational number.

Note that the restriction on derivations implies that vad(x) is identical to 1
for all variables x in all reached configurations.

Not all timed automata as defined by these restrictions on formulas and
the ASM defined previously admit infinitesimal discretization. For example,
consider the timed automaton of Fig. 15.7. States are represented by circles
and transitions by arrows. The initial state is marked by an arrow without
a source state. Derivation formulas are not given, since they are implied.
Guards are given as labels of transitions, decorated with a question mark. A
formula without a question mark labeling a transition represents the discrete
change. An invariant is given as a label of a state. If a guard or an invariant
is identically true, it is not given explicitly, which means for the automaton
of Fig. 15.7 that in the second state, the invariant does not ever force control
to move on.

x<1
x’=x

(x=1)?initially, x=0

Fig. 15.7. A timed automaton which is not well behaved.

The timed automaton of Fig. 15.7 is not well behaved: In an STASM
interpretation, there is a run which starts in the first state with x = 0, waits
one time unit, then moves on to the second state in a discrete step, not
changing x during that step, and stays indefinitely in the second state.

Consider an infinitesimal discretization in which the step width does not
divide 1. In this case, the first state can not be left by the discretized run
before � 1

dt� steps of the system, but then, it is too late for the transition to
be taken, because under the condition considered, dt ∗ � 1

dt� is larger than 1.
Thus, the STASM run can not be mimicked by the NTASM run for the value
of dt considered:

Proposition 15.3.1. The rule of Figures 15.5 and 15.6 is not well-behaved
for all timed automata encoded in the initial condition.

We investigate sufficient conditions for well-behavedness of timed au-
tomata. The idea is to find restrictions on guards and invariants so that

168 15. An ASM Meta-model for Timed and Hybrid Automata

the following strategy is possible: each discrete step of the STASM system is
mimicked by a discrete step of the NTASM system resetting exactly the same
variables, and each time step of the STASM system of length l is mimicked
by � l

dt� steps of the NTASM system. Using this strategy, we have to deal
with the problem that after a sequence of steps mimicking a time step might
take an infinitesimal longer, and in a discrete step, the variables not reset
also become by an infinitesimal larger in the NTASM system, while in the
STASM system, they stay the same.

Under which condition does it not matter if in the NTASM behavior,
variables have infinitesimally larger values that in the STASM behavior? We
propose to require the following:

Definition 15.3.2. A right-open timed automaton is a timed automa-
ton with the following restriction:

Let φ range over the guards and invariants of a timed automaton, and let
x range over its variables. If for all such φ and x, the conjuncts for x in φ
describe a standard right-open interval, then the timed automaton is called
right-open.

This restriction will allow us to prove:

Proposition 15.3.2. The rule R as defined by Figures 15.5 and 15.6 is well-
behaved for right-open timed automata.

Proof. We will use the same idea as in the proof of Proposition 14.4.5: We
define a predicate q�q′ on state pairs so that each standard step of [[R]]h from
standard q to r can be mimicked by a (possibly empty) sequence of steps of
[[R||now:=now+dt]] from q′ to some state r′ with r � r′.

(A) Define � by:

q � q′ ⇔def

∧ d(q, q′) � 0
∧ ∀x∈Varsq(cur_va(x)) ≤ q′(cur_va(x))

(B) Consider q and q′ with q � q′, q standard. We will prove: (B.i) If [[R]]h

admits a time step of standard length l from q to r, then [[R||now:=now+dt]]
admits a sequence of � l

dt� time steps of length dt from q′ to r′ with r � r′.
(B.ii) If [[R]]h admits a discrete step represented by update set u from q to r,
then [[R||now:=now+dt]] admits a discrete step represented by u′ simulating
u from q′ to a state r′ with r � r′.

(B.i) Assume that [[R]]h admits a time step of standard length l from q to
r. This means, by the definition of time steps of STASMs, that the change
from q to r can be accounted for only by continuous increase of now, i.e.,
by the flow of time, and in all configurations reached on this way (possibly
excluding r), [[R]] admits a SKIP step. This is only possible if in all these con-
figurations, all invariants of active states are fulfilled for the values of cur_va
reached during the time step (except possibly the last). Right-openness of the
timed automaton implies for the invariants that for standard values of cur_va

15.4 Well-Behavedness of Hybrid Automata 169

which fulfill all active invariants, it does not hurt if the values of some (or all)
variables are incremented by an infinitesimal: Also the value assignment com-
puted by such an operation fulfills all active invariants. Thus, if [[R]]h admits
a time transition of standard length l from q, then [[R||now:=now+dt]] admits
a sequence of � l

dt� time-only steps from q′; and since this sequence of steps
takes at most an infinitesimal longer than l, and also in q′, the cur_va-value
of all variables is at most an infinitesimal larger than in q, the same is true
for the reached state r′ in comparison to r, so that r � r′ holds.

(B.ii) Assume that [[R]]h admits a standard discrete step with update set
u from q, leading to r. We have to show that this step can be mimicked by
[[R||now:=now+dt]] from q′ for any q′ with q � q′. u consists of some discrete
transitions being taken. The same transitions can be taken from q′, (a) be-
cause the same states are active in q and q′ (because of d(q, q′) � 0), and (b)
because of the right-openness of the guards of the transitions being taken,
so that it does not matter if the cur_va-values of some variables are an in-
finitesimal larger in q′ than in q. The resulting set of updates u′ is similar
to u. It remains to be shown that the two states reached are in �-relation.
In the reached states r and r′, cur_va-values of variables which have been
reset are both zero, and values of non-reset variables are in r′, where time
has been incremented by dt in the discrete step, have increased by not more
than another infinitesimal from q′, so that also for the reached states r and
r′, we have r � r′.

(C) A standard induction on the length of STASM-runs yields the result.

15.4 Well-Behavedness of Hybrid Automata

The formalism of hybrid automata is more general than that of timed au-
tomata. Guards, invariants and derivation formulas are conjunctions of strict
or non-strict inequalities of terms which are linear expressions of the vari-
ables of the system, where standard rational coefficients are allowed. Discrete
step formulas are similar, the difference is that both non-primed and primed
occurrences of the variables are allowed, where primed occurrences represent
values of variables after the discrete step.

As for timed automata, we investigate well-behavedness for hybrid au-
tomata. Since timed automata are a special case of hybrid automata, the ex-
ample given above of a timed automaton for which the rule R of Figures 15.5
and 15.6 is not well-behaved is also an example of a hybrid automaton for
which the rule is not well-behaved.

We use the same strategy as for timed automata for describing restrictions
on hybrid automata so that the rule R is well-behaved for them: We simulate
an STASM time step of standard length l by a sequence of � l

dt� NTASM timed
steps of length dt, and we simulate a discrete STASM step by a single NTASM
step. We also get the same problem: In the simulation, the cur_va-values of
variables will be a bit different from the values in the original run because
timed step sequences might take a bit longer in the simulation, and discrete

170 15. An ASM Meta-model for Timed and Hybrid Automata

steps do take some infinitesimal time (instead of no time) in the simulation.
This implies that variables with a positive derivation might have increased
a bit more in the simulation, and variables with a negative derivation might
have decreased a bit more.

We will first use the restriction that the variables of the hybrid automaton
can be divided into three classes, which we will call positive, neutral and neg-
ative. If the values of a variable in corresponding states of the original run and
of the simulating run are compared, we will allow that positive variables have
infinitesimally larger values in the simulation than in the original, negative
variables may have infinitesimal smaller values in the simulation than in the
original, and neutral variables must have the same values in corresponding
states.

In order to simplify the case distinctions, we assume that formulas are
given in normal form: (i) The rational factor of a variable in an inequality
is always positive, and (ii) each inequality in a discrete-step formula refer-
ences at least one primed variable. If a formula does not fulfill (i), this can
be repaired by moving the variable and its factor to the other side of the
inequality, changing the sign of the factor in the operation. If in an inequality
of the discrete-step formula, no primed variables occurs, this inequality can
be moved from the conjuncts describing the discrete step of a transition to
the conjuncts describing the guard of the transition.

Strict inequalities present no problem for the simulation: If in the orig-
inal run, a standard time step or discrete step is possible, the infinitesimal
differences of cur_va-values in the simulation can not turn strict inequalities
from fulfilled to not fulfilled: the value of either side of the inequality can
only change by an infinitesimal (all factors are standard, and the variable
values in the original run are standard); and for two standard values x and y
which fulfill x < y, changing either or both by an infinitesimal will not change
the truth value of x < y. This means that only formula conjuncts which are
non-strict inequalities may be a problem for the infinitesimally discretized
simulation.

Another non-problem are occurrences of variables on the “right” sides. If
a positive variable occurs on the “greater” side of an inequality, or a negative
variable occurs on the “smaller” side, this is no problem for the simulation:
since all factors are positive, an increase of a variable on the“greater”side will
not turn a formula from fulfilled to not-fulfilled, and neither does a decrease
of a variable of a variable on the “smaller” side. Since neutral variables have
identical values in corresponding states of the original run and the simulation,
they will never be a problem for a simulating step being taken.

A state q in the original run might correspond to a state q′ in the simu-
lating run if all of the following conditions hold:

– q is standard
– d(q, q′) � 0
– For positive variables x, q(cur_val(x)) ≤ q′(cur_val(x))

15.4 Well-Behavedness of Hybrid Automata 171

– For negative variables x, q(cur_val(x)) ≥ q′(cur_val(x))
– For neutral variables x, q(cur_val(x)) = q′(cur_val(x))
– For all variables x, q(vad(x)) = q′(vad(x))
– q(last discrete step at) ≤ q′(last discrete step at)

The first restriction for well-behavedness is that in non-strict invariance
or guard inequalities, positive variables occur at most on the “greater” side,
and negative variables occur at most on the “smaller” side.

The restriction on invariance inequalities implies that standard length
timed steps of the STASM system can be simulated by a sequence of dt-length
time steps as described above. The infinitesimal deviations in the start state
in the simulation will present no problem, and the possibly infinitesimally
longer time of the simulation will also be allowed. The sequence of dt-length
steps will end in a state which is in the proper relation to the state reached
by the simulated time steps.

The restriction on guard inequalities admit the simulation of discrete steps
in the original system, as far as the next values to be chosen are not relevant.

The second restriction is on derivation formulas. They must only allow
non-negative values for positive variable, non-positive values for negative vari-
ables, and the value zero for neutral variables.

This restriction implies that during the sequence of time steps in the
simulation, which can be an infinitesimal longer than the simulated time
step, the additional length changes the values of variables into the proper
direction.

It is more difficult to find a plausible restriction for discrete-step formu-
las, since the next values to be chosen may depend on the current values of
variables, which might be infinitesimally different in the original run and its
simulation. Consider singleton set with a discrete transition without a syn-
chronization label, or a set of discrete hybrid-automaton transitions which
belong to different automata and which carry the same synchronization la-
bel. A priori, i.e., without consideration of guards, discrete-step formulas or
reachability questions, this describes possible discrete steps of the automaton.
Such a set of discrete hybrid automaton transitions defines a set of inequal-
ities: those inequalities which occur in the discrete-step formulas of the set
considered which are non-strict and in which a non-primed variable occurs on
the wrong side. We call this set of inequalities Φ. Only formulas in Φ might
be a problem for the simulation, i.e., might require different new values for
variables to be chosen in the simulated discrete step than in the original. This
is because of the following: In a strict inequality, the standard values chosen
for primed variables in the original discrete step are also a possible choice if
unprimed variables have slightly deviating values; and if unprimed variables
occur only on the right side, the values chosen for primed variables in the
original fulfill also the condition in the simulation.

If at least one non-strict inequality occurs in the discrete step formula
considered in which at least one unprimed variable occurs on the wrong side,

172 15. An ASM Meta-model for Timed and Hybrid Automata

there can be a problem with choosing values for the primed variables. Note
that is not necessarily a problem if the values chosen in the step to be sim-
ulated do not fulfill the inequalities with the slightly changed values for un-
primed variables, since it is possible to choose these value also slightly changed
(an infinitesimal larger for positive variables, and an infinitesimal smaller for
negative variables). Only neutral variables must be chosen as in the original
step.

Unfortunately, just knowing that unprimed variables might be a bit larger
or smaller in the original is not enough. Satisfiability of Φ might depend on
more specific properties of the unprimed variables. For example, let X be
a neutral variable, Y and Z positive variables, which have equal values in
the step to be simulated. Consider the discrete-step equation X ′ = Z − Y
(more precisely, assume that X ′ + Y ≥ Z and X ′ + Y ≤ Z are elements
of Φ for the discrete step considered). This can be simulated if also in the
simulation, before the step Y = Z holds, but we can not guarantee this,
since we only know that Y and Z are at most by an infinitesimal larger than
zero in the simulation before the step, not that they are equal. This means
that investigations of satisfiability of discrete-step formulas would need more
specific restrictions of the hybrid automata considered.

We just point out two special cases of hybrid automata which admit in-
finitesimal discretization. One are right-open timed automata, for which the
rule is well-behaved; the other are hybrid automata in which for each discrete
transition, the set of potentially problematic formulas Φ is empty.

15.5 Summary

This chapter presents an NTASM semantics for timed and hybrid automata,
which is another approach to modelling timed and hybrid systems. It is
demonstrated that the concept of well-behavedness can be transferred to
this context as well. For timed automata, it is fairly simple to find a plau-
sible condition to ensure well-behavedness. For hybrid automata, this is a
bit more complicated, because the values of continuously changing variables
might become infinitesimally smaller or infinitesimally larger in the NTASM
variant because of the infinitesimally imprecise simulation. This means that
more cases have to be distinguished, and in our approach to simulation, more
restrictions are necessary. Again it is shown that concepts from the formalism
used for expressing the semantics are helpful in defining important properties
of models of the defined formalism.

16. A Production Cell with Timing

16.1 Introduction

Lewerentz and Lindner [LL95] designed a case study inspired from an indus-
trial application. This case study was often used for illustration of features
of different modelling formalisms for reactive systems.

We will use a case study similar to this, which also seems to be inspired
by industrial examples, in order to illustrate features of our approach in such
a more practical context.

In the case study by Lewerentz and Lindner, no timing properties were
specified; in a similar case study, defined by Lötzbeyer and Mühlfeld [LM96],
this changes. Interesting features of this second case study are the following:

– Variants of the system have to be taken into account by implementors;
Lötzbeyer and Mühlfeld do not define just one production cell but an ab-
stract scheme for a production cell which can be realized in different ways.
Specifically:
– The realized variants might have different global structure. There might

be one or two cranes for transporting blanks being worked an, and there
might be two or four processing machines which can be used for working
the plates.

– Each processing machine can be of one of two different types. (a) Oven-
type machines work on a blank as long as it is located in the machine;
working time can only be controlled by choosing the time interval be-
tween putting a blank into a machine and taking it out. The machines do
not have to be switched on or off, they are on all the time. (b) A drill-
or-press-type machine has to be switched on when a blank has to be
processed, and it is switched off automatically when the fixed processing
time has ended.

– Blanks have to be processed according to different programs, i.e., the se-
quence of processing steps is not fixed, but can be different for any blank
entering the system.

– Timing is relevant: Each blank may be associated with an upper bound for
the time of its being in the system, and for the oven-type processing units,
with a time interval defining upper and lower processing time.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1_16,
© Springer-Verlag Berlin Heidelberg 2005

174 16. A Production Cell with Timing

The task consists in defining a control program for a flexible production
cell and proving some properties of the whole system consisting of the pro-
duction cell hardware and the control program. We now proceed to describe
the main features of the case study task description.

16.2 Task Description

One version of this second production cell case study scheme is depicted in
Fig. 16.1. New plates arrive in the system via the feed belt, whose motion is
to be controlled by the controller to be designed. At the end of the belt, a
light barrier is located which can be used to detect if a new blank has arrived,
and a code reader can identify the processing program for the blank.

After the plate has been processed by the system, the blank is supposed
to be put on the deposit belt. A sensor tells if it is occupied. The deposit belt
is not controlled by the control program to be developed. We assume that the
environment will never change the state of the deposit belt from unoccupied
to occupied1.

The program read by the code reader specifies which processing units
must be used, possibly also specifying the order, and for processing steps in
oven-type processing units, it possibly specifies time constraints. Additionally,
the program might specify a maximal time for the interval between taking a
blank off the feed belt and putting it on the deposit belt.

processing unit 1

processing unit 2

feed belt
with

code reader

deposit belt

L1

Fig. 16.1. A flexible production cell, diagram copied from [LM96].

1 This assumption is not justified by the original task description, but it is plausi-
ble.

16.2 Task Description 175

In the figure, two processing units are depicted. Each has a sensor which
tells if it is working, and each has an actuator with which it might be switched
on or off; but oven-type machines are not supposed to be switched on or off
by the control program, and drill-or-press-type machines are only switched
on; they switch themselves off by themselves. Note that it is not fixed which
processing unit is of which type. The specification has to take this into ac-
count.

“L1” in the figure is the crane used for moving plates; it can be moved
in three directions. The x-direction is that from the feed belt to the deposit
belt, the y-direction is that from one processing unit to the other, and the
z-direction is the vertical direction, i.e., the crane can move up or down. Two
vertical positions are defined explicitly, a “lower” and an “upper” position.
In the lower position, the magnet gripper of the crane can pick up or drop
blanks; in the upper position, the crane can travel horizontally without that
collisions with belts or processing units can occur.

The variant with a different global structure just consists of two cranes
which are located in parallel, and of four processing units. See Fig. 16.2 of a
view from above.

The actuators to be driven by the control program are the following:

– Switch on/off the feed belt movement.
– Activate the code reader of the feed belt. After activation, the code reader

needs some (unspecified) time until the result is presented.
– Switch on processing unit i (i ∈ {1, 2} or i ∈ {1, 2, 3, 4}) for processing

units of drill-or-press type.

processing unit 1

processing unit 2 processing unit 4

processing unit 3

feed belt
with

code reader

x8x1 x3x2 x4 x5 x6 x7

y3

y1

y2

deposit belt

portal with two travelling cranes L1 and L2

L1

L2

Fig. 16.2. Larger version of a flexible production cell and special crane positions,
mostly copied from [LM96].

176 16. A Production Cell with Timing

– Move crane i horizontally into position xk (i = 1 or i ∈ {1, 2}, k ∈
{1, . . . , 8}).
We assume that during a crane movement, a crane will just ignore another
movement command. Only after it has reached its target, it will listen again
to this actuator2.

– Move crane i horizontally into position yk (i = 1 or i ∈ {1, 2}, k ∈ {1, 2, 3}).
– Move gripper of crane i into upper/lower position (i = 1 or i ∈ {1, 2}).
– Switch the magnet of crane i on/off (i = 1 or i ∈ {1, 2}).
A crane can move in both horizontal directions at the same time and stops
automatically when its target position is reached.

The following sensors inform the control program about states of the
production cell:

– Is there a blank at the end of the feed belt?
– Is there a blank at the beginning of the deposit belt?
– Is processing unit i loaded with a blank (i ∈ {1, 2} or i ∈ {1, 2, 3, 4})?
– Is processing unit i currently processing a blank (i ∈ {1, 2} or i ∈

{1, 2, 3, 4})?
– Is position xk occupied by some crane (k ∈ {1, . . . , 8})?
– Is the crane i in position yk (i = 1 or i ∈ {1, 2}, k ∈ {1, 2, 3})?
– Is the gripper of crane i in the upper position (i = 1 or i ∈ {1, 2})?
– Is the gripper of crane i in the lower position (i = 1 or i ∈ {1, 2})?
– What is the output of the code reader?

The dashed lines in Fig. 16.2 show the meanings of the crane positions xk

and yk. If the smaller version of the scheme is used, we just assume that
processing units three and four are missing.

The output of the code reader will either be zero (if the code reader has
not yet been activated since the last arrival of a blank at the end of the feed
belt, or there is no blank at the end of the feed belt, or the time the code
reader needs for determining the program for a blank has not yet passed), or
it is the description of a processing program to be executed for the blank by
the control program. This program is a quadrupel consisting of the following
components:

– The first component is a natural number n (n ≤ 2 or n ≤ 4, depending on
the number of processing units in the system). It describes the length of
the program.

– The second component is a list of length n, where each list element is
a triple consisting of the number s of a processing unit (s ∈ {1, 2} or
s ∈ {1, 2, 3, 4}) to use for the step and of two number min and max where
min denotes the minimal processing time and max denotes the maximal

2 The original task description does not specify if during the movement of the
crane, another movement command is accepted, possibly changing the direction
of a movement before the target of the first movement command is reached, or
if this is not possible.

16.2 Task Description 177

processing time for the processing unit s, where ∞ can be used as value for
an unbound maximal processing time3. For drill-or-press-type processing
units, it may be assumed that the numbers for min and max are 0 and ∞,
respectively, and for oven-type machines, the max value can be assumed to
never be ∞.
We assume that the list ist not empty and each processing unit occurs at
most once in it4.

– The third component is a Boolean value if the order of processing steps
is fixed by the list, or of any order can be chosen for the execution of the
steps.

– The fourth component is an element of N ∪ {∞} again. It denotes the
maximal time in seconds which the blank may spend in the system, i.e.,
from the moment the gripper takes it from the feed belt to the moment
the gripper puts it on the deposit belt.

The initial state of the system is defined by the feed belt movement switch
being off, the cranes are not moving, magnets are off and no blanks are
carried, and drill-and-press-type processing units are not operating5. There
may be blanks in the system, which are just moved to the deposit belt6.
Since in our approach, it is an invariant that at most one blank is in the
system-cum-deposit belt, the deposit belt can be assumed to be empty.

Several timing constants are used to describe the production cell.

– vxi, vyi and vzi describe, in meters per second, how quickly the crane
i or the gripper moves in the different directions. Positive and negative
acceleration times are neglected, i.e., it is assumed that these speeds are
instantly reached after a movement is initiated, and that the movement
instantly stops after a target position has been reached.

– pxi for i ∈ {1, . . . , 8} and pyi for i ∈ {1, 2, 3} describe positions in me-
ters. Their differences can be used to compute, together with the speeds,
traveling times from one position to another.

– height, in meters, is the distance between the lower and upper position of
the crane grippers; it is the same for all cranes.

– t stationi is the processing time in seconds for processing unit i, which is
of the drill-and-press type.

We use several assumptions which are not allowed explicitly by the original
task descriptions, but which seem sensible:
3 This interpretation is different from the original task specification, which is pre-

sumably false. In the original task specification, the minimal and maximal times
of the i-th list entry are presrcibed to be used for processing unit i, not for the
processing unit number s.

4 This assumption is not mentioned explicitly by the original task description.
5 The original task description says that no processing units are operating, but

this is in conflict with the fact that oven-type processing units are switched on
all the time.

6 The original task description does not define what to do with blanks which are
in the system in the initial configuration.

178 16. A Production Cell with Timing

– We assume that the restriction regarding the maximal processing time
given for a blank in its program is always possible to respect physically,
i.e., crane movement times and processing times for blanks in the processing
units add up, for an optimal schedule allowed by the program, to at most
the time allowed for in the blank’s program7.
Note that this very weak assumption can lead to quite involved scheduling
requirements. We discuss this in some detail later.

– We assume that the production cell works as specified by the timing con-
stants, i.e., we do not deal with malfunctions which might be detected if
after the computed time for some movement or processing step has passed,
the target is not reached or the processing unit is not ready. Perhaps it
would be more realistic that the speeds and times above are lower bounds
for the real system constants.

– We assume that during processing of a blank in a processing unit, the
gripper is allowed to stay in the lower position above the processing unit8.

– We assume that we know at the start of the program which processing
units are of which type. This information could also be determined from
the programs read from the code reader, but it seems natural that the
control program has this kind of data from the start off.

– For the variant with two cranes, the crane used for the transport of a plate
must be changed at least once. If a program is empty, this change can not
be performed without the blank being put into some processing unit where
no processing is to be done. But this is excluded by the requirement that
a blank only visit processing units given in its program. We assume that
programs for blanks may not be empty in the larger variant.

16.3 Requirements to Be Fulfilled
by the Control Program

The following requirements are to be fulfilled by the system:

– No two cranes may be at the same x position, and a crane may only move
if its gripper is in the upper position.
Note that this requirement does not specify a minimal distance between x-
positions of cranes. This seems to be an omission, which we repair by requir-
ing at least a strictly positive distance min x dist between the x-positions
of cranes. We assume that between the specially designated positions pxi,
the distance is more than min x dist.

– A blank may only be put into a processing unit if it is not occupied by some
other blank, and it may only be put onto the deposit belt if the sensor does
not report that the start of the belt is occupied.

7 The original task description does not specify if this can be assumed, or what
has to be done if this is not fulfilled.

8 The original task description is silent about this.

16.4 Direct Consequences from the Task Description 179

– The feed belt must be switched off when a blank arrives at its end, and
a gripper magnet may only be switched off if the gripper is in the lower
position above a processing unit or a belt.

– Every blank taken from the feed belt will eventually be put on the deposit
belt.

– Blanks go through the processing units given in their programs; if the
program specifies that the order of the program list has to be respected,
this is the order used for the blank.

– Between the moment when a blank is picked up from the feed belt and the
moment it is put on the deposit belt, no more than the maximal allowed
system processing time as specified in its program may be spent.

– The minimal and maximal processing times in oven-type processing units
must be respected.

16.4 Direct Consequences from the Task Description

The task description does not show some features which might perhaps have
been expected in a description inspired by a real application:

– Efficiency does not belong to the requirements, i.e., it is not required blanks
are processed as quickly as possible.
Thus, the specification allows that at any one moment, at most one blank
is resident in the system, even if one could without problem process sev-
eral; but this makes the second crane of the larger configuration mainly
superfluous, and it would make identical processing units in the system
superfluous. This second crane only leads to the complication that an op-
timal scheduling for some blank might be more difficult to compute, as the
cranes might move with different speeds and are in different positions.

– The requirement to be able to compute an optimal schedule for a blank
comes from the weakness of the assumption regarding the total residence
time of a blank in the system for the larger global configuration. This
assumption seems to lead to most complications for the design.
It is not clear if this is an intentional consequence from the original task
specification, since fullfilment of the other requirements does not seem too
be algorithmically too involved, and this consequence results from an as-
sumption on our part about the interpretation of the upper residence time
of a blank in the system.
Perhaps, stronger assumptions about the maximal residence times of blanks
are admissible.

The only obvious way in which the optimal scheduling requirement might
be weakened is by ignoring the maximal processing times altogether. Less
obvious assumptions are the following:

– It might be assumed that both cranes have the same speeds in all direc-
tions, or that the maximal residence time is large enough so that even the

180 16. A Production Cell with Timing

slower times suffice. Then, a repeated crane switching for movements is not
necessary; it only has to be ensured that the single crane switch necessary
can be done quickly enough.

– It might be assumed that each of the speeds of one crane is larger than or
equal to the corresponding speed of the other crane. Only crane one can
serve the feed belt and only crane two can serve the deposit belt.

We will not use any of these simplifications.

16.5 An Abstract Control Program

We present a first variant of a system description, on an abstract level, just
consisting of (a) the feed belt with its light barrier and the code reader; (b)
a transport-and-processing system fetching blanks from the end of the feed
belt, executing the program, and putting the processed blank on the deposit
belt; and (c) the deposit belt. This system description would be true for all
variants allowed in the task description and fix our interpretation of some of
the common parts, which should be refined when more details are expressed.

We use the following modes of the control program for the transport-and-
processing system:

– cleaningUp: Move a blank possibly residing in the system at startup to
the deposit belt; when ready, enter mode waitForNextBlank.

– waitingForNextBlank: Move crane one to the feed belt, wait until another
blank arrives, and activate the code reader when it does; then move to mode
waitingForNextProgramAndDepositBelt.

– waitingForNextProgramAndDepositBelt: Wait for the next program to
become available, and for the deposit belt to become free. As soon as
both conditions are fulfilled, compute and activate a new schedule for the
program, and move on to mode executingSchedule.

– executingSchedule: Execute the schedule up to its end; when it has come,
move back to mode waitingForNextBlank.

In Fig. 16.3 we present a rule for operating the feed belt. It is responsible
for switching the feed belt off as soon as a blank arrives at its end, and for
switching it on as soon as the light barrier says that a blank has left. feed-
BeltIsOn is a flag location which is updated when the feed belt is switched on
or off; feedBeltSignalsBlank, SwitchFeedBeltOff and SwitchFeedBeltOn
directly correspond to sensors and actuators of the system.

The rule OperateFeedBelt is to be used in parallel to the other rule of
the system, which describes the behavior of the transport-and-processing sys-
tem, which is given in Fig. 16.4. The latter starts in mode cleaningUp and
determines if there is a blank in the system. If it is not, it waits for the next
blank, otherwise, it moves the only blank in the system to the deposit belt,
and then waits for the next blank. Waiting for the next blank means moving
crane one to the feed belt, waiting until the deposit belt is empty, waiting

16.5 An Abstract Control Program 181

OperateFeedBelt =def

IF AND feedBeltIsOn
AND feedBeltSignalsBlank

THEN || SwitchFeedBeltOff
|| feedBeltIsOn := FALSE

ELIF AND NOT feedBeltIsOn
AND NOT feedBeltSignalsBlank

THEN || SwitchFeedBeltOn
|| feedBeltIsOn := TRUE

ELSE SKIP

Fig. 16.3. A rule for operating the feed belt of the system.

TPSystem =def

IF modeTP = cleaningUp
THEN IF blankInSystem

THEN CleanUp
ELSE modeTP := waitingForNextBlank

ELIF modeTP = waitingForNextBlank
THEN || MoveCraneOneToFeedBelt

|| IF AND craneOneAtFeedBelt
AND feedBeltSignalsBlank

THEN || ActivateCodeReader
|| modeTP := waitingForNextProgramAndDepositBelt

ELSE SKIP
ELIF AND modeTP = waitingForNextProgramAndDepositBelt

AND nextProgramAvailable
AND NOT depositBeltSignalsBlank

THEN || ComputeSchedule
|| modeTP := executingSchedule

ELIF modeTP = executingSchedule
THEN || ExecuteSchedule

|| IF scheduleHasFinished
THEN modeTP := waitingForNextBlank
ELSE SKIP

ELSE SKIP

Fig. 16.4. A rule describing the control program for the transport-and-processing
subsystem in an abstract fashion.

for the feed belt to become empty, and waiting for a new blank program
to become available. If all this is true, a scheduling for the blank program
is determined and its execution starts. As soon as the scheduling has been
executed to its end, the system starts waiting for the next blank again. The
derived symbol blankInSystem signals if there is a blank in some processing
unit or connected to some gripper. Rule CleanUp is supposed to remove a
blank from the system if on start, the system is not empty; it moves the

182 16. A Production Cell with Timing

blank just to the deposit belt. Rule MoveCraneToFeedBelt moves crane one
to the end of the feed belt, where the gripper is to stay in the upper position.
The derived symbol craneOneAtFeedBelt signals if the crane has arrived at
the feed belt. Rule ActivateCodeReader corresponds directly to an actua-
tor of the system. The derived symbol nextProgramAvailable signals if the
code reader has computed the next program to use. Rule ComputeSchedule
computes a new schedule for the transport-and-processing system.

A schedule is a finite list, the elements of which are executed in the order
given in the list; each element is either (a) an actuator to be activated when
that list element is reached, or (b) a condition on the sensors, meaning that
on reaching that list element, the control program waits until the condition
becomes true, or (c) a real number, meaning that when the list element is
reached, the system waits for the time given by the number before it proceeds
to the next element.

The schedule to be computed by ComputeSchedule will have to fulfill the
correctness and safety requirements for the system. As we assume that such
a schedule always exists, the task of ComputeSchedule is a possible one.

Rule ExecuteSchedule executes the current schedule, as described above
for the possible entries. When a schedule entry has been processed, it is
removed from the list. The derived symbol scheduleHasFinished signals if
the currently active schedule has been computed up to its end, by checking
if the list representing it is empty.

Only rule ComputeSchedule needs more discussion and refinement for the
different alternatives of the system. We consider an abstract version of this
rule. Figure 16.5 presents this abstract version; it describes which conditions
a schedule for a program has to fulfill. Symbol currentProgram designates
the program for which a schedule is to be computed. currentSchedule is to
contain the schedule which is being computed. processingTime(s) denotes,
for a schedule s, the time from the moment when the blank is taken from the
feed belt up to the time when it is put at the deposit belt. maxTimeToUse(p)

ComputeSchedule_Abstract =def

CHOOSE s:isScheduleForProgram(s,currentProgram) IN
currentSchedule := s

isScheduleForProgram(s,p) =
AND processingTime(s)≤maxTimeToUse(p)
AND setOfPUs(s) = setOfPUs(p)
AND FORALL (u:setOfPUs(s)):

AND minProcessingTime(u,p)≤processingTime(u,s)
AND processingTime(u,s)≤maxProcessingTime(u,p)

AND followOrder(p)→(listOfPUs(s) = listOfPUs(p))

Fig. 16.5. An abstract rule specifying the schedule for the current program.

16.6 Schedules for Variable-Order Programs 183

denotes the maximal time to use for the program p. setOfPUs yields the set
of processing units mentioned in a schedule or a program. minProcessing-
Time and maxProcessingTime yield, for a processing unit and a program,
the minimal and maximal admissible processing times, and processingTime
yields, for a processing unit and a schedule, how long the processing unit op-
erates on the blank for the schedule. followOrder extracts the information
from a program if the processing machines have to be used in the order given,
and listOfPUs yields the list of processing units in the order in which they
are mentioned in a schedule or in a program, where for a schedule, several
mentionings of the same processing unit are collapsed into one.

Any implementation of ComputeSchedule will have to replace the non-
constructive CHOOSE statement with a constructive variant so that the sched-
ule put into currentSchedule fulfills the same conditions as listed in the
abstract specification.

16.6 Schedules for Variable-Order Programs

The case for variable order of processing units can, for both the case with one
crane and the case with two cranes, be dealt with using the (yet to be de-
termined) solutions for the cases with fixed order of processing units, by just
computing the schedules for all permutations of the sequence of processing
units and choosing one with a minimal processing time. Since the maximal
number of processing units is four, this means that at most 4! = 24 schedules
must be computed, which we assume to be an acceptable number of alterna-
tives to check (the original task description does not limit the resources for
computing schedules, which might be an omission).

Figure 16.6 presents this idea as an ASM rule. PUPermutations is assumed
to yield, for a program given as argument, the set of (maximally 24) programs
resulting from permuting the order of the processing units in the argument.
The variable S of the LET expression consists of the schedules for these
programs when they are considered to be executed in the order given, and
the Hilberts choice function ε is used to select an element from this set of
schedules with a minimal processing time.

What remains to be defined is a function mkScheduleForFixedOrder
which computes a schedule for a fixed order program. The case with two
cranes is far more complicated than the one with one crane. We first deal
with the simpler version.

16.7 One Crane, Order of Processing Units Fixed

When a schedule is to be computed for a newly determined program, we know
that the (only, in this case) crane is waiting above the blank at the end of the
feed belt. Thus, the first thing to do is to pick up the blank to be processed:
the gripper is moved down, the magnet is turned on, and the gripper is moved

184 16. A Production Cell with Timing

ComputeSchedule_Concrete =def

currentSchedule :=
IF followOrder(currentProgram)
THEN mkScheduleForFixedOrder(currentProgram)
ELSE mkScheduleForVariableOrder(currentProgram)

mkScheduleForVariableOrder(p) =def

LET S = {s|∃(q : PUPermutations(p)) :
s = mkScheduleForFixedOrder(q)

}
IN ε({s ∈ S : ¬∃(t ∈ S) : processingTime(t) < processingTime(s)})

mkScheduleForFixedOrder(q) =def

IF systemHasOneCrane
THEN mkScheduleForFixedOrder_oneCrane(q)
ELSE mkScheduleForFixedOrder_twoCranes(q)

Fig. 16.6. Rule describing how a schedule for a program with a flexible ordering
of processing units is computed.

up again. Then, for each processing unit in the program, the same happens:
The crane is moved to the position of the processing unit; the gripper is
moved down; the magnet is switched off; for oven-type processing units, the
system waits for the minimal processing time as given in the program, while
for drill-or-press-type processing units, the processing unit is switched on
and it is waited until it has finished its work; remember that we assume
that the gripper may stay in the lower position during processing of a blank,
which is neither explicitly allowed nor explicitly forbidden by the original task
description. Then, the magnet is turned on again, and the gripper moves up
again. When there is no more processing unit to be worked with, the crane
moves to the deposit belt, lowers the gripper, switches the magnet off, and
moves the gripper up gain. The movement back to the feed belt is controlled
by the general control program described by rule TPSystem in Fig. 16.4.

Using the dot as denoting list concatenation (again using a prefix syntax
as for other associative operators), we can express the computation of the
schedule for a one-crane system as given in Fig. 16.7, where the correspon-
dence of list elements with actuators and sensors should be clear. Function
list creates a list from its argument(s). isOvenType(q) tells, for an element
of the list component of a blank program, if the processing unit to be used
is of the oven type; minTime fetches the minimal processing time given for
such an element, switchOnPU switches on the processing unit mentioned in
the list element, and isProcessing determines if the processing unit is cur-
rently processing some blank. isEmpty tells, for a list, if it is empty, and
emptySchedule is an empty schedule list. first and rest yield, for a non-
empty list, the first element and the list consisting of all elements but the
first one.

16.8 Executing the Current Schedule 185

mkInitSchedule =def

list(moveGripperDown(1), isGripperDown(1),
switchMagnetOn(1),
moveGripperUp(1), isGripperUp(1))

mkExitSchedule =def

list(moveCrane(1,x8), moveCrane(1,y2),
isCraneAt(1,x8) ∧ isCraneAt(1,y2),
moveGripperDown(1), isGripperDown(1),
switchMagnetOff(1),
moveGripperUp(1), isGripperUp(1))

mkPUSchedule(q) =def

. list(moveCrane(1,xpos(q)), moveCrane(1,ypos(q)),
isCraneAt(1, xpos(q)) ∧ isCraneAt(1, ypos(q)),
moveGripperDown(1), isGripperDown(1),
switchMagnetOff(1))

. IF isOvenType(q)
THEN list(minTime(q))
ELSE list(switchOnPU(q), ¬ isProcessing(q))

. list(switchMagnetOn(1),
moveGripperUp(1), isGripperUp(1))

mkProgramSchedule(p) =def

IF isEmpty(p)
THEN emptySchedule
ELSE mkPUSchedule(first(p)) . mkProgramSchedule(rest(p))

mkScheduleForFixedOrder_oneCrane(p) =def

. mkInitSchedule

. mkProgramSchedule(PUList(p))

. mkExitSchedule

Fig. 16.7. Computing the schedule for a program with a one-crane system.

We have yet to discuss if the schedule constructed here obeys the require-
ments; obviously, the order in which a blank is processed is as given in the
program for the blank. Requirements for processing times are also fulfilled
(this will be ensured by the executor rule of the schedule to be described
in the next section), as are the requirements regarding collision avoidance.
Finally, the maximal residence time of the blank in the system will not be
exceeded because this is the quickest possible schedule, and we assume that
the quickest possible schedule fulfills the residence time requirement.

16.8 Executing the Current Schedule

At this point in our design process, we have fixed enough details so that we can
make more precise the meaning of rule ExecuteSchedule and of the derived
predicate scheduleHasFinishedwhich are used in mode executingSchedule

186 16. A Production Cell with Timing

scheduleHasFinished =def isEmpty(currentSchedule)

ExecuteSchedule =def

IF isEmpty(currentSchedule)
THEN SKIP
ELSE LET s=first(currentSchedule),

t=rest(currentSchedule)
IN
IF isActuator(s)
THEN || ActivateActuator(s))

|| currentSchedule := t
ELIF isSensorPredicate(s)
THEN IF sensorPredicateIsTrue(s)

THEN currentSchedule := t
ELSE SKIP

ELSE IF waitUntilMoment = ⊥
THEN waitUntilMoment := now + s
ELIF now ≥ waitUntilMoment
THEN || currentSchedule := t

|| waitUntilMoment := ⊥
ELSE SKIP

Fig. 16.8. Rule and predicate controlling the execution of a schedule.

of rule TPSystem as given in Fig. 16.4. Figure 16.8 presents our approach. is-
Actuator and isSensorPredicate tell if a schedule element is an actuator
or a sensor predicate, respectively; a schedule element which is neither of
these is a real number representing a delay. If an actuator has been rec-
ognized, it is activated (rule scheme ActivateActuator is assumed to do
this), and the first element of the current schedule is removed. If a sensor
predicate has been recognized, it is checked if it is true (via the predicate
sensorPredicateIsTrue); if it is, the entry is removed from the schedule;
otherwise, nothing is done, i.e., the controller just waits. Finally, i.e., if the
first element of the schedules says that the controller should wait for some
time, it is checked if the moment when the waiting should end (waitUntil-
Moment, initialized with ⊥) has already been computed or not. If it has not
yet been computed, the computation is performed; and if it already has been
computed, it is checked if the control program already waited long enough;
when this is the case, i.e., when the current time is at least as large as the
moment up to which the system should wait, the entry is removed from the
schedule; otherwise, the system does nothing, i.e., it just waits.

Note that the STASM semantics of these rules fulfill the timing require-
ments quite obviously. In the NTASM semantics of the rule, waiting times
might be by an infinitesimal longer than given in the program, because of
the infinitesimal discretization, and because of the fact that activating an
actuator or evaluating a sensor predicate takes at least time dt. We deem
such an infinitesimal deviation from the specified timing acceptable, which

16.9 Two Cranes, Order of Processing Units Fixed 187

should not be a problem in practical situations. If the maximal processing
times in processing units or the maximal total residence time of a plate are
not by a standard margin larger than the minimal times, this might become a
problem, but this case is very unrealistic. Thus, under plausible assumptions,
also the NTASM semantics will fulfill the requirements.

Some other derived symbols and rules used in TPSystem could also be
defined at this spot, but since they are fairly obvious, we do not give the def-
initions here. Thus, we just assume that the meanings of the symbols blank-
InSystem, CleanUp, MoveCraneOneToFeedBelt and nextProgramAvailable
are appropriately fixed.

16.9 Two Cranes, Order of Processing Units Fixed

Only one omission of our design now remains to be filled in: we have to
define a function mkScheduleForFixedOrder_twoCranes(p) which yields a
two-crane schedule for a program p.

In our interpretation of the task description, we promised to find a sched-
ule for a blank if there exists one. Specifically, this means that if there is a
schedule so that the maximal residence requirement of the blank in the sys-
tem is obeyed, the control program will use it. For programs with a variable
order of processing units, we reduced the problem in a simple way to the
problem for programs with a fixed order of processing units, as described in
Sect. 16.6. For a system with one crane and a program with a fixed order of
the processing units, the computation of the schedule with minimal residence
time is fairly easy, as described in Sect. 16.7.

The case with two cranes is more complicated than the one with one
crane because the residence time of a blank in the system depends (a) on the
order in which cranes are used for the transports of a blank between belts
and processing machines, (b) on the initial positions of the second crane, and
(c) on the speeds of the cranes in the different directions and the geometry
of the production cell.

16.9.1 Splitting a Schedule into Segments

We approach the problem by considering the schedule by which a new blank
is transferred from the feed belt through the processing system to the de-
posit belt to be split into segments. During one segment of a schedule, the
same crane is responsible for moving the blank between belts and processing
units, and a segment ends if a crane loses this responsibility, either to the
other crane, or because the blank has been put on the deposit belt. During
a segment, the blank is moved from one defined position (feed belt, deposit
belt or one of the processing units) to another, until the last position of the
segment is reached, which is the first position of the next segment (if there is
one), or the deposit belt in the other case.

188 16. A Production Cell with Timing

In a two-crane system, a schedule has at least two segments, since without
collision, only the first crane can fetch a blank from the feed belt and only
the second crane can put the blank to the deposit belt. Since we have at most
four steps in a blank program, there are at most four segments during the
processing of a program, but we will abstract from this later. Since only an
even number of segments transfer a blank from the feed belt to the deposit
belt, two and four segments are the only possibilities in the system considered.

Our global strategy for scheduling is similar to (but more involved than)
the strategy used for constructing a variable-order schedule from a solution
to the fixed-order schedule problem: We simply consider all possible splits of
the movements of the blank into segments, develop a maximal speed schedule
for each segmentation, and finally select a schedule which fulfills the timing
conditions with respect to oven-type processing units and the total residence
time. The way of constructing the schedules ensures that the other conditions
are fulfilled, only the total residence time might be longer than allowed be-
cause of an badly chosen segmentation, or the upper time of residence in an
oven-type processing unit might be exceeded if a change of cranes takes place
while the blank is located in an oven-type processing unit, since there is some
minimal time which is needed for a change of responsibility. Since we require
that for each program, a possible schedule exists, and we construct, for each
segmentation, a schedule with a minimal total residence time and minimal
residence times in oven-type machines, an admissible schedule will be found.
This idea is expressed in the function given in Fig. 16.9. A segmentation is
a list of non-empty lists of program steps where the concatenation of the
smaller lists yields almost the program step list of the original program, with
the only difference that the first step in all but the first smaller lists is a repe-
tition of the last step of the previous list, and the last step of the last segment
is the position of the deposit belt. Each smaller list in a segmentation, i.e.,
each segment, represents a sequence of movements between positions which
is to be performed by the same crane. EvenPUSegmentations(p) is the set of
segmentations of program p into an even number of segments. The only sym-
bol needing more elaboration is the function mkScheduleForSegmentation,
which yields a quickest schedule for a segmentation given as argument.

16.9.2 The Active and the Passive Crane and Their Tasks

We call the crane which is responsible for moving the blank during a segment
the active crane of the segment. The other crane is called passive. The latter

mkScheduleForFixedOrder_twoCranes(p) =def

LET S = {s|∃(q : EvenPUSegmentations(p)) :
s = mkScheduleForSegmentation(q)

}
IN ε({s ∈ S : processingTimeOk(s,p) ∧ ovenTimesOk(s,p)})

Fig. 16.9. Computing the schedule for a program with a two-crane system.

16.9 Two Cranes, Order of Processing Units Fixed 189

term is slightly misleading because also the passive crane has specific tasks,
as will be described shortly. In order to be specific, let us say that a segment
ends precisely in the moment the active crane drops the blank at the last
position of the segment.

Let us now consider the tasks of the two cranes during a segment.
During a segment, the active crane (which, at the beginning of the seg-

ment, has not yet gripped the blank) is responsible for moving to the place
where the blank will be taken up, for taking up the blank from its place, for
moving it to its first destination, and for putting it down at its destination; if
the segment has not yet ended, the active crane then waits for the processing
of the blank being finished, picks up the blank again and continues as before.
After the transport of the blank to the place marking the end of a segment
has been accomplished and there is another segment in the schedule, the re-
sponsibilities change. Altogether, during a segment, the behavior of a crane
is similar to the case with one crane; a difference is that possibly, the other
crane is not yet far enough out of the way, so that before the active crane
starts a movement into the direction of the passive crane, it has to be ensured
that the distance to the other crane will not become too small. This can be
done during the planning phase, since we assume that the system runs error
free.

A formerly active, now passive crane has two tasks: Firstly, it has to get
out of the way so that the formerly passive, now active crane can do its work
without collision. Secondly, it has to assume a sequence of positions during
its waiting time so that it can resume responsibility again quickly, as soon as
it should be required to do so. Thirdly, if (and when) its time has come to
become active again, it has to move towards the processing unit from where
it has to take up the blank, i.e., to the first position of the segment in which
it is (or will be) again active.

Before work on a blank starts, the passive crane might have to assume
a special position or even start moving from there in order to take over its
responsibility from the other one quickly enough when the residence time of
the blank is running, i.e., before the active crane picks up the blank from the
feed belt.

16.9.3 Resting Position, Target Position and Initialization

The resting position of a passive crane is a position which is out of the
range which the active crane will need to do its work during the work on
the current segment, but which is as near as possible to the next position
at which the now passive crane will be needed again; the latter is called the
“target position”. Both the resting position and the target position are only
computed for passive cranes, i.e., for crane two for odd-numbered segments,
and for crane one for even-numbered segments. Since only segmentations
with an even number of segments are considered, the functions are for the
last segment, i.e., if the segmentation considered contains only one more

190 16. A Production Cell with Timing

mkTargetPosition(q) =def

IF length(q) = 1
THEN mkFeedBeltPosition
ELSE mkPosition(xIdx(lastPU(first(q))),

yIdx(lastPU(first(q))))

mkRestingPosition(q,crane) =def

IF length(q) = 1
THEN mkFeedBeltPosition
ELSE mkPosition(xIdx(lastPU(first(q)))+(crane=1 ? -1 : 1),

yIdx(lastPU(first(q))))

Fig. 16.10. Computing a resting position and a target position.

segment, always called with crane one. The computation of the two positions
is different if we deal with the last segment in a segmentation or with another
segment. In the first case, we are computing the positions for crane one at
the end of a schedule; it seems sensible to use the position over the feed belt
for both. In the other case, the positions are defined by the position of the
last element of the currently executed segment in the segmentation: this is
the target position, and for the resting position, the y index is the same, and
the x index is, for crane one, by one less than the index of the last processing
unit in the current segmentation, and by one larger than this in the other
case. Figure 16.10 defines the functions.

The resting position is assumed by the passive crane before a fresh blank
is picked up from the feed belt, and after a crane has dropped the blank at the
end of its activity during a segment and the other has taken over. A special
case is crane two after it has completed the last segment for a blank: In this
case, there is no resting position defined for the crane, and it just moves its
gripper up and waits until a next blank reaches the end of the feed belt.

As soon as a segmentation to use has been determined, a resting position
is defined and crane two will move there during the initialization of the system
for the work on the next segmentation, before the new blank to be processed is
picked up. The initialization of the transport-and-processing system consists
just of crane two moving to its resting position for the first segment (see
Fig. 16.11). The global controller rule TPSystem deals with the requirement
that crane one moves to the feed belt before a schedule starts.

mk2CranesInitialization(q) =def

LET r = mkRestingPosition(q,2) IN
list(
moveCrane(2,xPos(r)), moveCrane(2,yPos(r)),
isCraneAt(2,xPos(r)) ∧ isCraneAt(2,yPos(r))

)

Fig. 16.11. Initialization schedule for the two-crane system.

16.9 Two Cranes, Order of Processing Units Fixed 191

16.9.4 Specifics of Crane Behavior

The main features of the behavior of the cranes in a two crane system is
described in the flow diagram in Fig. 16.12. This diagram describes the states
through which a crane goes during its work on a segmentation, starting after
the initialization has been finished. We will describe the meanings of the
nodes of the diagrams.

– down1 is the state in which a crane which just starts its activity moves
down towards the blank. Before this state is entered, the crane must have
reached the position over the blank. When this state is entered, the gripper

down1

wait1

magnet on

up1

start_y_movement_to_next_PU

wait2

x_move_to_next_PU

down2

finishing segment?
yes no

drop_first_PU

drop_first_segment

start_processing1

wait3

start_processing2

up2

start_y_movement_to_resting_position

x_move_to_resting_position

wait4

x_move_towards_target

x at target?
yesno

wait5

finished work? stopyesno

Fig. 16.12. Behavior of cranes in the two-crane system.

192 16. A Production Cell with Timing

is moved downwards. The state is left when the gripper has reached the
lower position.
This is also the state in which crane one starts its work after the initializa-
tion.

– When the gripper has reached the lower position, the crane must possibly
wait before it may pick up the blank. This phase is represented by state
wait1. There are three reasons why it might be necessary to wait: (a) If
the blank is in an oven-type processing unit, the minimal processing time
might not yet have been reached. In this case, the crane waits until the
minimal processing time has been reached. (b) If the blank is in a drill-or-
press type processing unit, the work of the processing unit might not yet
have been finished. In this case, the cranes waits until the processing unit
has finished its work. (c) If the blank is located on the feed belt (then the
active crane is necessarily crane one), it might be necessary to wait until
crane two has reached a position from where it can pick up the blank after
the first segment has ended as quickly as possible. If the second crane needs
more time from its resting position to its target position than is needed
for the first segment of the current segmentation, the second crane might
come later than necessary; to avoid that the total residence time is already
counting in such a case, crane one will wait until crane two is near enough.

– After the crane has waited long enough, it picks up the blank by switching
its magnet on, and then moving the loaded gripper up in state up1.

– When the gripper has reached the upper position, the movement in the
y-direction which is necessary in order to reach the position of the next
processing unit of the first segment of the segmentation is initiated. State
start y movement to next PU represents this; this state is immedi-
ately left for state wait2.

– Before the crane can start its x-direction movement into the direction of
the next position it has to check if the passive crane, which is currently
moving to its resting position, is far enough out of the way. If it is not, it
has to wait. This happens in state wait2.

– When it is ensured that the passive crane is far enough out of the way, the
active crane moves in the x-direction to the next position in the currently
executed segment. This movement happens in state x move to next PU.

– After the crane has reached its target position (both its x- and its y-
coordinate), it moves the gripper down again. State down2 represents
this phase.

– What happens next depends on the case if the current is the last transport
of the current segment, i.e., if the active crane is just finishing the current
segment. If this is not the case, no change of responsibilities has to take
place: The current program step is just stripped from the current segment
(in state drop first PU), the magnet is turned off, and possibly, the pro-
cessing unit is turned on. The latter happens in state start processing1.
After this, the computation continues in state wait1, which has already
been discussed.

16.9 Two Cranes, Order of Processing Units Fixed 193

– If the current transport is the last in a segment, a change of responsibilities
takes place. First, the current segment (the transports for which have now
been processed) is removed from the segmentation (drop first segment).
Normally, the crane would now just proceed to drop the blank in order to
start its processing; but there is a case in which it has to wait with this: If
the current processing unit is an oven-type machine, the other crane, which
must pick up the blank before the upper limit of the processing time has
been reached, might be too slow. If this situation is possible, the currently
active crane might have to wait some time with dropping the blank on
the oven so that the currently passive crane will come soon enough. This
waiting phase is denoted by wait3.

– When the crane has waited long enough, the crane will drop the blank by
switching the magnet off, and if the processing unit is of the drill-or-press
type it will be switched on. This happens in state start processing2.

– After the crane has dropped the blank, it has now changed its
role: It is passive. It first moves up (start up2 represents this phase),
initiates the y-movement to the resting position (in state
start y movement to resting position), and then moves to the x-
coordinate of the resting position (in state x move to resting position).
It stays in this state until the x-coordinate of the resting position has been
reached. Since the resting position is always in the direction away from the
other crane, no collision can occur because of this movement. A collision
could only happen if this movement towards the resting position is not
quick enough and the other, now active crane has picked up the blank and
moves it into the same direction, but quicker. In order to deal with this
possibility, the other crane would have to wait in the already discussed
state wait2.

– After the now passive crane has reached its resting position, its task
changes: Either it has finished its task for the current segmentation; then it
just stops (state stop), and the whole process will be started afresh by the
main driver program when the next two-crane-schedule has to be executed
for the next blank.

– If there will be a segment in the current segmentation in which the crane
will become active again, it has to be ensured that the crane is always as
near to the position where it is next needed as is possible without risking
collision with the active crane. This is done by first waiting until it is
ensured that the other crane will have left the region of the next x-index
in the direction of the target position when the current crane reaches that
region. This waiting is done in state wait4.
wait4 is also the state in which crane two starts after the initialization:
After initialization, crane two is located at its resting position for the first
segment.

– When the crane has waited long enough, the crane moves one x-position
towards its next target, i.e., the next position where it will be needed again

194 16. A Production Cell with Timing

(in state x move towards target). This state is left if that x-position
isreached.

– After the crane has reached the next position, it is checked if this is already
the x-coordinate of the target. If it is not, we might have to wait again until
the other crane leaves the next position where we have to go (again in state
wait4). If the target x-coordinate has been reached, we have to wait until
also the y-coordinate has been reached (state wait5), and then, the gripper
of the crane which now is becoming active again can start moving down
again (in the already discussed state down1).

This interpretation fixes most features of the schedule for a single crane
to be constructed. Only the waiting times to use in states wait1, wait2,
wait3 and wait4 deserve more discussion (see Sect. 16.9.5). Let us as-
sume that this problem has been solved; then, the derivation of a schedule
for a single crane from the flow diagram specification is straight forward,
but tedious. We will not do this here, but simply assume that a function
mkOneCraneScheduleForSegmentation(q,crane) has been defined which,
for a segmentation q and a crane number, yields the schedule for this crane.
It remains to be shown how these two schedules can be combined into one.

Our strategy is to insert, in each of both schedules, in front of each Boolean
expression on the sensors of the system, which implies a waiting time for the
schedule, this implied delay. These waiting times can be computed because
(a) the initial configuration (the one assumed by the system after the initial-
ization of the system for a blank program) is known, (b) the speeds of all
movements and the processing times in drill-or-press type processing units
are known, and (c) no sensors which are controlled from outside the system
occur in the constructed schedule for the cranes; the only sensors for which
such times could not have been computed are the ones of the feed belt and the
deposit belt, and both do not have to be dealt with by the work on a segmen-
tation – they are dealt with by the enclosing abstract control program. We
assume that a function addExplicitDelays(schedule1,schedule2,conf),
invoked with two schedules for the two cranes and the configuration of the
system from where to start, and yielding a pair of two schedules for the two
cranes, but without sensor occurrences, implements this strategy.

Note that ideally, i.e., if we assumed that the processing times and speeds
of the system components are exactly known, we could just drop the sensor
expressions from the schedules and get the same total behavior. The decision
not to remove the sensor expressions from the schedules reflects our decision
that this assumption would be too ideal.

The second (and last) step then consists of combining the two schedules.
Figure 16.13 describes how the pieces fit together. combineSchedules com-
putes the combination in a recursive fashion, by using any non-delay at the
start of one of the argument schedules first, and by using the minimum delay
if both schedules start with a delay step.

16.9 Two Cranes, Order of Processing Units Fixed 195

combineSchedules(s1,s2) =def

IF isEmpty(s1)
THEN s2

ELIF isEmpty(s2)
THEN s1

ELSE
LET f1=first(s1), r1=rest(s1),

f2=first(s2), r2=rest(s2)
IN
IF ¬isExplicitDelay(f1)
THEN list(f1) . combineSchedules(r1,s2)
ELIF ¬isExplicitDelay(f2)
THEN list(f2) . combineSchedules(s1,r2)
ELIF f1 ≤ f2

THEN list(f1) . combineSchedules(r1,list(f2 − f1).r2)
ELSE list(f2) . combineSchedules(list(f1 − f2).r1,r2)

mkScheduleForSegmentation(q) =def

LET schedPair
= addExplicitDelays(

mkOneCraneScheduleForSegmentation(q,1),
mkOneCraneScheduleForSegmentation(q,2),
mkInitialConfiguration(q)

)
IN combineSchedules(first(schedPair),second(schedPair))

Fig. 16.13. Computing the schedule for a given segmentation.

16.9.5 Waiting Times in a Two-Crane System

The only thing that remains to be determined are the waiting times in the
single-crane schedules for the two-crane system as defined in Sect. 16.9.4. We
use the state names from the diagram in Fig. 16.12 again and repeat, for
convenience, the reasons for the waiting times:

– Crane one might have to wait in state wait1 until crane two is near enough
before the blank is picked up from the feed belt and total residence time
starts running).

– A loaded crane might have to wait in wait2 some time before it transports
the blank to the next processing unit because the passive crane might not
yet have moved far away enough.

– A crane which is about to drop the blank at the end of a segment might
have to wait in state wait3 if the blank is to be dropped on an oven-type
processing unit and the other crane might be too slow to pick up the blank
again before the maximal processing time has been reached.

– A passive crane will typically have to wait in state wait4 before it may
start the movement to the next x-position in the direction of the processing
unit where it has to become active again.

196 16. A Production Cell with Timing

Note that when the waiting time computed for a state is negative (which
is not uncommon, as will be seen), the value zero has to be put into the
single-crane schedule, since the function combineSchedules does not handle
negative delays properly.

It is most convenient to start with discussing the waiting time in wait4.
How long must a passive crane wait until it may move one x-position in the
direction of its target? To be specific, let us assume that crane two is the
passive crane for which we compute the waiting time; the other case can be
reasoned about analoguously. Let us call the x-position of crane two xi; since
its target position must be to the left, the next x-position to head for on its
way to the target is xi−1; we call this x-coordinate the intermediate target
of the passive crane (which before the last movement is at the same time the
final target). After it is started, the movement can not be stopped until that
x-position is reached. In order to avoid a collision with crane one, crane two
must wait so long that crane one will be on its way away from xi−1 when
crane two reaches that region, and will never come back again during its work
on the current segment.

In order to compute the time until crane one is far enough out of
the way up to the end of the work on a segment, we use a function
timeUntilLeft(q,crane,x,conf). For a segment q, a crane number, an x-
coordinate and a current configuration (conf), this function computes the
time up to the first moment in which the crane will start leaving the x-
coordinate given into the direction away from the other crane and never
come back again until it reaches the resting position to be assumed af-
ter the work on the current segment, all this under the assumption that
the waiting times in states wait1, wait2 and wait3 are zero. For exam-
ple, timeUntilLeft(q,1,xi−1,conf) is the time after which crane one will
have left the intermediate target if started from the configuration conf
and will not come back again until it has reached its resting position, and
timeUntilLeft(q,1,xi−1−min_x_dist,conf) is the time after which crane
one will be far enough away from the intermediate target position so that a
collision with crane two at that position is avoided.

The time until the active crane has left some area is computed under the
(in general wrong) assumption that in the waiting states of an active crane
wait1, wait2 and wait3, no time is spent. We have to discuss why this can
not lead to problems:

– First, note that the value of the function is only relevant when the passive
crane is far enough out of reach, i.e., after the passive state has reached
its resting position, and during its careful approach to its target position;
this means that ignoring the waiting time in state wait2 can not lead to
problems, since also in a proper computation of waiting times, this situation
would lead to a waiting time of zero in this state.

– Second, note that not waiting in states wait1 and wait3 will not lead to
collisions, only to the possibility that the total processing time for a blank

16.9 Two Cranes, Order of Processing Units Fixed 197

will be longer than strictly necessary (for wait1), or that a blank is pro-
cessed longer in an oven than allowed (for wait3). These two problems will
be dealt with later, when the waiting times for these states are computed.

Let us now consider the case that crane two is slower than or as quick
as crane one in its x-movements. Then the optimal waiting time, i.e., the
time so that crane two reaches the target as quickly as possible without
danger of collision, is so that crane two reaches the x-coordinate xi−1 +
min x dist exactly when crane one leaves from xi−1: in this moment, we
have the minimal allowed distance; earlier during the movement towards the
intermediate target, the distance was larger; and later during this movement,
it will not be smaller, because crane one leaves the intermediate target at
least as quickly as crane two approaches it.

If crane two is quicker than crane one, the described waiting time would be
too short because crane two would approach the intermediate target position
quicker than crane one would move away from it. In this case, the time of
nearest approach should be when crane two reaches the intermediate position
and crane one is moving away from xi−1 − min x dist.

Function wait4time in Fig. 16.14 expresses the result of this reasoning
for the general case, i.e., without restriction to the case that crane two is
passive. First, the special case is handled that the passive crane is crane one
and we deal with the last segment. In this case, the crane does not have
to wait, because the target is to the left of the crane, away from the other
crane, so no collision can occur because of the next movement. Otherwise,
we use a LET-phrase for computing the waiting time. First, the number of
the other crane is computed. sign is used for determining the intermediate
target position intmdtTarget one index position from the current x position
into the direction of the target, where we have to deal with the special case

wait4Time(q,conf,crane) =def

IF crane=1 ∧ lastSegment(q)
THEN 0
ELSE

LET otherCrane = (crane=2 ? 1 : 2),
sign = (crane=2 ? -1 : +1),
intmdtTarget = xCoord(xPos(crane,conf)+sign),
slower = (vxcrane < vxotherCrane),
refCrane = IF slower

THEN intmdtTarget
ELSE intmdtTarget - sign*min_x_dist,

refOtherCrane = refCrane + sign*min_x_dist
IN
timeUntilLeft(q,otherCrane,refOtherCrane,conf)
- abs(refCrane-xCoord(crane,conf))/vxcrane

Fig. 16.14. Waiting time before the passive crane does the next x-movement to-
wards its target position.

198 16. A Production Cell with Timing

that during the last segment, the target of crane one is to the left, not to the
right. slower is a Boolean variable recording if the passive crane is slower
than its counterpart. It is used in the case distinction for the computation
of the x-coordinate of the crane for the moment of nearest aproach between
the two cranes. This coordinate is assigned to refCrane, and it is used in the
computation of the position of the other crane at the moment of nearest ap-
proach (refOtherCrane). Finally, the waiting time is computed as difference
from the time until the other crane has left the x-coordinate of the point of
nearest approach, and the time the passive crane needs to reach its position
for the moment of nearest approach.

Note that the time computed by wait4time might be negative. This
means that the passive crane might even have started its movement ear-
lier (by the absolute value of the computed time) than the current moment
without that a collision would have occurred. But since we assume that the
waiting time is checked as early as possible, i.e., as soon as the passive crane
has reached the x-coordinate from which it can start the next move, it is not
possible for the passive crane to use this extra time. But there are situations
in which the other crane might use this time: Instead of moving as quickly as
possible, it might wait exactly this time before it starts its movement without,
and yet, collisions will be avoided. This feature is used in the computation of
the waiting times in states wait1 and wait3.

Figure 16.15 presents the function for computing the waiting time for
crane one before it picks up the blank from the feed belt. If the waiting time
of the then passive crane, i.e., of crane two, is negative in the initial situation,
this means that the total residence time of the blank in the system can me
reduced when the blank is picked up by crane one after this amount of time.

Figure 16.16 presents the function computing the waiting time for a crane
before it drops the blank onto an oven at the end of a segment. Here again,
the crane may only wait if its passive counterpart has a negative waiting
time (otherwise, a collision would occur), and the waiting time again may be
at most as long as the absolute value of this negative waiting time, similar
to the case for state wait1. But since the total residence time is already
running when a crane is in this state, the crane should move as early as
possible without endangering that the blank stays too long in the oven. For
this, we compute the oven time which would ensue if the blank would be
dropped immediately (we assume that this is determined by the function

wait1Time(q) =def

LET t=wait4Time(q,mkInitialConfiguration(q),2)
IN IF t < 0

THEN −t
ELSE 0

Fig. 16.15. Waiting time before blank is picked up for the first time.

16.10 Are the System Properties Ensured? 199

wait3Time(q,conf,crane) =def

LET t=wait4Time(q,conf,3-crane) IN
IF t ≥ 0
THEN 0
ELSE
LET s=defaultOvenTime(q,conf,crane),

m=maxOvenTime(q,conf)
IN IF s ≤ m

THEN 0
ELSE min(s − m,−t)

Fig. 16.16. Waiting time before the blank is dropped in an oven at the end of a
segment so that a slow different crane can be near enough to pick the blank up in
time.

defaultOvenTime), and we determine the maximal oven time (via the func-
tion maxOvenTime). If the default oven time is smaller than or equal to the
maximal oven time, we do not have to wait. Otherwise, we either wait for the
difference between the default oven time and the maximal oven time or the
absolute value of the waiting time of the passive crane, whichever is smaller.
In this case, collisions are avoided, but maximal oven times are not necessar-
ily obeyed. If a constructed schedule does not fulfill the oven-time condition
(because the difference s− m is larger than −t at the end of some segment),
it will be sorted out from the set of considered schedules in mkScheduleFor-
FixedOrder_twoCranes by the predicate ovenTimesOk (see Fig. 16.9).

Figure 16.17 presents the last function, that for waiting time in state
wait2. The case is very similar to the one with state wait4, only the roles
are exchanged: Now the active crane is the one which possibly has to wait
before it can start its movement towards its next target, because perhaps,
the passive crane is not yet far enough out of the way. Now, we do not deal
with intermediate targets: When the movement starts, it goes directly to the
x-coordinate of the next processing unit (target). In this case, a problem
can only ensue if the crane is quicker than its counterpart, and if the next
x-coordinate lies to the same side as the other crane; otherwise, the crane
does not have to wait. If it might have to wait, the reference point for the
other crane is computed analoguously to the case for state wait4, but the
waiting time can be computed simply by dividing the distance to travel to
the reference point by the traveling speed and subtracting from this the time
which the current crane will need to reach its target when it has been started.

16.10 Are the System Properties Ensured?

In Sect. 16.3, several properties are which should be proved of the system
under consideration. We will now go through this list, shortly explaining how
a proof would proceed in each case.

200 16. A Production Cell with Timing

wait2Time(q,conf,crane) =def

LET otherCrane = (crane=2 ? 1 : 2),
sign = (crane=2 ? -1 : +1),
target = xCoord(xPos(nextPU(q))),
quicker = (vxcrane > vxotherCrane),
refOtherCrane = target + sign*min_x_dist

IN
IF quicker ∧ sign*(target - xCoord(crane,conf))>0
THEN sign*(refOtherCrane-xCoord(otherCrane,conf))/vxotherCrane

- sign*(target-xCoord(crane,conf))/vxcrane

ELSE 0

Fig. 16.17. Waiting time before a loaded crane can move to the next processing
unit when the other crane might not yet be far enough away.

– The two cranes may never be nearer that min x dist on their x-coordinates.
This holds in the initial case, and the waiting times for states wait1, wait2,
wait3 and wait4 were carefully chosen to ensure that this also holds during
the processing. An induction will show that this invariant will hold, only
possibly allowing infinitesimal errors.

– A blank may only be put into a processing unit if it is not occupied by some
other blank, and it may only be put onto the deposit belt if the sensor does
not report that the start of the belt is occupied.
This is obviously fulfilled by the system, since a blank is only picked up
from the feed belt if there is no blank in the rest of the system, including
the deposit belt.

– The feed belt must be switched off when a blank arrives at its end, and
a gripper magnet may only be switched off if the gripper is in the lower
position above a processing unit or a belt.
Both invariants are obviously fulfilled by the control program; for the latter,
this can be seen be inspecting the schedules for the crane or cranes.

– Every blank taken from the feed belt will eventually be put on the deposit
belt.
Since a blank is only taken from the feed belt when the whole system is
free, and the sum of processing times, transport times and (possibly) crane
change times is finite, the computed schedule will lead to the blank being
dropped on the deposit belt after some finite amount of time.

– Blanks go through the processing units given in their programs; if the pro-
gram specifies that the order of the program list has to be respected, this is
the order used for the blank.
This is obviously fulfilled by the computation of the schedules for the
crane(s).

– Between the moment when a blank is picked up from the feed belt and the
moment it is put on the deposit belt, no more than the maximal allowed
system processing time as specified in its program may be spent.

16.11 Summary 201

Since each crane starts all its movements as early as is possible considering
the other restrictions (collision avoidance, maximal oven times), a minimal
time schedule for a program or a segmentation will be constructed. And if
several possibilities for the order of the program steps or the split of the
program into segments exist, for each of them a minimal time schedule is
computed; if a schedule fulfilling this condition exists (which we assume),
it will thus be found. This holds for both the one-crane system and the
two-crane system.

– The minimal and maximal processing times in oven-type processing units
must be respected.
For the one-crane system, this is trivial. For the two-crane system, the wait-
ing time in wait1 if the current processing unit is an oven will ensure that
the minimal processing time is respected, and the waiting time in wait3 is
computed so that the maximal oven processing time is respected during the
work on the current segmentation, if this is possible obeying the no-collision
requirement (which need not be the case for some segmentations).

16.11 Summary

This chapter presents a larger case study, which is inspired by an industrial
application. The task description had been designed to show how different
formalisms can deal with timing requirements and variants of a system.

The timing requirements pose no special problems for our approach to
modelling timed systems; the STASM semantics allows a quite straightfor-
ward implementation of the requirements, and for the NTASM semantics,
plausible assumptions are necessary.

Our solution for the two-crane case is of considerable complexity, but this
does not seem to have to do with shortcomings of the formalism we used.
Rather, the problem itself seems to be difficult and to need an inconveniently
large number of case distinctions, so it is expected that also the formalization
of the approach has to reflect this.

The flexibility in the architecture for the systems which have to be dealt
with can quite nicely be dealt with in the ASM approach because of the
freedom to choose the abstraction level as one wants to. Thus, the differences
between variants for the system architecture do not have to be dealt with
everywhere in the model: these spots where the variants play a role are clearly
localized.

17. Summary

The main result of this work is that there exists a model of quantitative
linear time which is both discrete and dense in the real numbers, and which
can be used for the description and analysis of algorithms which make use of
quantitative properties of a linear dense model of time with purely discrete
means.

During the development and use of this model, the concepts of well-
behavedness and strong well-behavedness arise naturally for the characteriza-
tion of dense-time algorithms which lend themselves to infinitesimal discretiz-
ability. Because of the choice of the very flexible ASMs as base formalism it
is possible to transfer these concepts to more specific machine models.

Looking more specifically at the goals described in Sect. 2.7, we conclude:

– Timing enhanced Petri nets and timed automata are modelled quite di-
rectly by our approach: the data-part of the models can be expressed with-
out overhead induced by the formalism. The same holds for Fischer’s syn-
chronization protocol. It might sensibly be expected that this would also
work for other formalisms or applications to be modelled.

– The discreteness of the time model has made it possible that Fischer’s
protocol can be proved with purely discrete means. We think that this
discrete method can be used for proving safety properties of timed systems
in general.

– The formalism is quite flexible in that it does not fix the abstraction level at
which an algorithm is to be described. An example is given in the definition
of timed automata where an abstract definition has been made concrete in
two different ways, and in the production cell case study where the common
features of the variants of the system could be dealt with at an abstract
level.

Chapter 3 gave an overview of problems of different models of time. Let
us sum up if our approach can solve them:

– A problem of classical discrete models of time is that the unit must be fixed
beforehand; this means that there is a lower bound on the time distance of
events. This bound also exists in our approach, but it is smaller than any
strictly positive classical real number, and its exact value is not supposed
to be known.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1 ,
© Springer-Verlag Berlin Heidelberg 2005

17_

206 17. Summary

– The intuitive choice of R as the time domain of densely linearly timed
algorithms can almost be preserved.

– Composition of modules designed with different step widths is a problem in
classical approach to discrete time. We avoid this by assuming a constant
but unknown infinitesimal step width.

– Refinement of discrete steps is no problem because in any non-empty stan-
dard interval there is an unlimited number of opportunities for steps; thus,
as long as the system has limited activity also after the refinement, there
is enough room for the extra steps possibly introduced by the refinement.

– There is always a next point in time of the system, and in each non-empty
set of moments there is a first moment. Both is not necessarily the case
in dense models of time. A drawback of our approach is that not every
predicate can be used to define sets of moments; this follows from the
restriction that predicate “st” is in general not set-forming.

– There are no Zeno runs, but this is no real win, since the underlying prob-
lem of unlimited activity of a system in limited time can occur.

– Our model of time is uniform. Discrete steps and time steps do not have
to be dealt with differently.

– If in a composition of two modules, considered at standard-R-resolution,
two events from different modules occur at the same time, then the d×N-
resolution is fine enough to see if they happen at the same time or, if not,
which happens before the other. But nondeterminism with respect to this
order must be made explicit, whereas in the classical model, it was implicit.

On our way to the major results just mentioned, we collected some minor
ones.

– We define the semantics of our variant of ASMs as action systems and
add special consideration for the description of effective systems. Action
systems contain enough structure to express synchronous as well as asyn-
chronous composition.

– On the basis of the semantics just mentioned, we describe a convention for
the formalization of the interaction of a system with its environment in
ASMs which is easily used in refinements.

– We dwell on an aspect of Gurevich’s thesis which might be misunderstood
(the claim that ASMs can be used for“coding free”description of algorithms
on any abstraction level): The exact tuning of intuition and formalization
means that what can be described as one intuitive step can also be de-
scribed as one step of the algorithm; we do not have to refine the intuitive
steps just because the formalism does not admit steps of the abstractness
headed for. This does not mean that we do not have to make some fea-
tures explicit in the control- and data-part of the algorithm which in other
formalism can stay implicit.

– We describe differences of ASMs as base formalism for the description of
discrete systems in comparison to other base formalisms.

17. Summary 207

– We develop an interpretation for ASMs which encodes the timing of an
algorithm in the framework of an interval-sequence semantics (the STASM
interpretation of ASM rules). The timing is encoded in the rules, it is not
described independently of the rules as is done in other approaches to the
description of timing-based systems with ASMs. The formalism-induced
artifacts of infinite activity and hesitation are described.

– We develop the NTASM interpretation of ASM rules and relate it with a
standard model of timed systems (STASM interpretation) by the definition
of a simulation relation, and well-behavedness and strong well-behavedness.
The latter two concepts are formalizations of the idea that an algorithm
can be both interpreted as description of an STASM system and as an
NTASM system, i.e., that it admits infinitesimal discretization of the time
domain.

– A notation for a temporal logic has been developed which allows the con-
cise expression of specifications of requirements for timed systems and the
expression of formalism-specific artifacts (mainly, this is unlimited activ-
ity).

– We give expositions of the main ideas used for asynchronous and syn-
chronous models of concurrency in the untimed ASM framework. This
forms the basis for the later discussion of timing-dependent features of
STASMs and NTASMs and can serve as a basis for ASM-models of other
formalisms. We discuss main problems of the two approached induced by
the formalization, i.e., fairness for asynchronous and causality for syn-
chronous composition.

– It is described how deadlines can be implemented in the synchronous (sim-
ple) and the asynchronous framework (more complicated).

– We describe how the concept of receptivity, which is the concept of unlim-
ited activity as applied to open systems, is vastly simplified in our frame-
work in comparison to frameworks based on a non-uniform model of time,
and we define the practically more relevant concept of (m, n)-receptivity.

– We describe how different magnitudes of the non-standard reals can be used
for making explicit that the timing of some components can be neglected
in comparison to that of others.

– We formally characterize commonly occurring conditions under which cycle
counting is not necessary in order to prove timing properties at a higher
abstraction level.

– We describe a meta-model for doubly timed Petri nets, showing the differ-
ences between time nets and timed nets by their expression in a common
framework and exposing an ambiguity in the original definition of Merlin
and Farber’s time nets.

– Some conditions for ensuring well-behavedness of doubly timed Petri nets
are analyzed, showing that the concept of infinitesimal discretizability can
be lifted from ASMs to Petri nets.

208 17. Summary

– We give a description of timed and hybrid automata, organized in two
abstraction levels which makes common features of the formalisms stand
out, and we again analyze the condition for well-behavedness.

– We present a solution to a task description which is meant, by their authors,
as a benchmark for formalisms with respect to their capabilities of dealing
with timing requirements and variants of a reactive system. Our formalism
does not seem to induce extra complications in addition to those present
in the task description, and specifically, both the timing requirements of
the task and the need to describe variants pose no problems at all.

There are some inherent problems of our approach, i.e., problems which we
do not expect to be solvable without considerable changes in the underlying
framework:

– We use concepts from nonstandard analysis. The gain in understandabil-
ity of our system descriptions resulting from the choice of a discrete and
uniform base model for time might thus be offset by the use of concepts
which are not very common in computer science.
Perhaps the main problem resulting from this point is that if an invariant
to be checked is non-standard (for example: “the standard part of the value
of term t is always greater than or equal to zero”), it can not be checked
by simple induction on the positions in system behaviors.

– In our approach, one intuitive step of an algorithm can not necessarily be
expressed as one step of the formalism – single intuitive time steps have
in general to be expressed by an unlimited number of steps. This is an
unavoidable consequence of the use of a uniform model of time.

– The timing of an algorithm is encoded in the rules, not given independently
of them. Thus, one is less flexible in describing systems behaviors using
this approach than in other approaches using ASMs for the description
of timing-based algorithms. Only experience can show if this really is a
problem, or if for more involved uses of the independence of the descriptions
of rules and timing, this just comes down to having to encode control
structure in ASMs explicitly, which is accepted for untimed uses of the
formalism. We suspect this to be the case.

– The constancy of the step width in NTASM systems might not always be
convenient.

– Simulation of an NTASM system is in general difficult. It can not be done
step-by-step, since in order to simulate an appreciable amount of time, an
unlimited number of steps have to be performed. If the execution of some
discrete step can depend on general functions of now, the length of the next
time step might be impossible to compute; restrictions for the use of now
in conditions are necessary.

Finally, we describe some work which could be done for building on the
current approach:

17. Summary 209

– More case studies could help to show the range of the approach (and its
limitations).

– The temporal logic might be axiomatized, a proof system might be inves-
tigated, and heuristics for its use might be developed.

– We did not yet investigate the possibility to describe system behaviors as
solutions of differential equations. The base idea would be to describe the
change of a continuously changing quantity y by an assignment of the form
y:=y+dt*y’. This would mean that now is not the only non-derived symbol
any more which changes its value continuously and where we have to deal
with infinitesimal errors when compared with a classical description of the
system. We did not yet explore in detail which problems arise from this
approach to system description.

– Since the formalism is very general, for practical use it would be helpful to
develop more conventions for the expression of different concepts of timing-
based systems in this framework (i.e., in NTASM rules and the associated
logic). This can make the missing guidance resulting from generality of the
formalism less urgent.

– Tool support, and specifically the possibility for simulation is missing. As
already described, simulation can not be done step-by-step. We expect that
the formalization of the concept of simulability of an NTASM interpretation
of an ASM rule will yield important insights into restrictions which are
sensible to effectiveness of descriptions of timing-based algorithms.

A. Common Notation

A.1 Non-standard Quantifiers and Predicates

To express non-classical predicates with functors concisely, we introduce some
abbreviations:

∀stxP abbreviates ∀x : st(x) → P
∃stxP abbreviates ∃x : st(x) ∧ P
∀finxP abbreviates ∀x : finite(x) → P
∃finxP abbreviates ∃x : finite(x) ∧ P
∀st finxP abbreviates ∀stx : finite(x) → P
∃st finxP abbreviates ∃stx : finite(x) ∧ P
We use the predicates infinitesimal(·), appreciable(·) and limited(·) to

characterize elements of R with these non-standard properties.
For reals x, x′, x � x′ is defined to hold if and only if |x−x′| is infinitesimal,

and x ∼ x′ is defined to hold if and only x and x′ belong to the same
magnitude, i.e., x

x′ is defined and appreciable.

A.2 Various Kinds of Expressions

tt and ff denote the Boolean values “true” and “false”.
For a finite set A, |A| is the cardinality of A.
ℵ0 is the cardinality of N0.
For a boolean expression b and two expressions x1 and x2, the expression

(b ? x1 : x2) represents x1 if b is true and x2 otherwises.

A.3 Various Expressions for Functions
and Sets of Functions

Functional values are sometimes expressed by lambda expressions, i.e., by
expressions of the form λ(x : A)(e), where x is a new variable, A is a set
expression (might be missing if it is understood over which set x ranges), and
e is an expression in which x might occur. A is the domain of the function.
The range is the set of values e can assume for x ranging over A.

A restriction of a function f to the intersection of its domain and a set D
is written f ↓ D.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1,
© Springer-Verlag Berlin Heidelberg 2005

212 A. Common Notation

For two sets A and B, A → B represents the set of functions with domain
A and range B.

For a non-empty set S, ε(S) is Hilbert’s choice function yielding an ele-
ment of S.

The domain of a function f is denoted dom(f) and the range is denoted
ran(f).

For a function f the expression f [a �→ b] is a function mapping elements
x ∈ dom(f) − {a} to f(x) and mapping a to b.

Finite functions may be given as sets of mappings, written like {x �→
0, y �→ 1}.

Two functions f and g are consistent if they agree on common arguments.
Note that disjointness of domains implies consistency.

For two functions f and g, f [g] denotes the function λ(e : dom(f) ∪
dom(g)) : (e ∈ dom(g) ? g(e) : f(e)), i.e., f is extended and overridden by g.
Note that for consistent f and g, f [g] = g[f].

A.4 Some Common Sets

For a set S, P(S) is the set of subsets of S.
N0 represents the set of natural numbers including zero. N represents the

set of natural numbers excluding zero. Z is the set of integers.
R represents the real numbers, R

+
0 represents the nonnegative real num-

bers, and R+ represents the positive real numbers, i.e., R
+
0 − {0}.

An interval I of N0 is a convex subset of N0, i.e., a set of elements of
N0 such that for i, j, k ∈ N0 with i < j < k, i ∈ I ∧ k ∈ I implies j ∈ I.
Intervals may be empty or total. The set of intervals over N0 is denoted as
intervals(N0). An initial interval of N0 is an interval which is empty or the
minimal element of which is 0.

For some set A, A is the set of sequences of elements of A, which are
represented as functions f ∈ AI for initial intervals I of N0 such that the ith
letter of such a sequence is f(i − 1).

ω is the first transfinite ordinal.
For some strictly ordered set M not containing ∞ and two elements a, b ∈

M , (a, b) denotes {m ∈ M : a < m < b}, [a, b] denotes {m ∈ M : a ≤ m ≤ b},
[a, b) denotes {m ∈ M : a ≤ m < b}, (a, b] denotes {m ∈ M : a < m ≤ b},
(a,∞) denotes {m ∈ M : a < m}, and [a,∞) denotes {m ∈ M : a ≤ m}.

A.5 Some Definitions

A partial order on a set S, typically written as ≤, is a binary relation which
is transitive (s ≤ s′ ∧ s′ ≤ s′′ → s ≤ s′′), reflexive (s ≤ s) and antisymmetric
(s ≤ s′∧s′ ≤ s → s = s′). We write s ≥ s′ for s′ ≤ s, s < s′ for s ≤ s′∧s �= s,
and s > s′ for s′ < s.

A.5 Some Definitions 213

We call a relation R ⊆ A× B bi-total if for each a ∈ A, there is a b ∈ B
with (a, b) ∈ R and vice versa. The set of bi-total relations over sets A and
B is denoted as bitotal(A, B).

The operators �·� and �·� represent the functions “round a real down to
the next integer” and “round a real up to the next integer”.

The semantics of a syntactical object t in a context c will typically be
denoted [[t]]c. Most often, c will be a first-order structure assigning meanings
to the symbols occurring in the first-order term t.

References

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-
time. Information and Computation, 104:2–34, 1993.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3–34,
1995.

[ACH97] L. O. Arkeryd, N. J. Cutland, and C. W. Henson, editors. Nonstan-
dard Analysis: Theory and Applications. Kluwer Academic Publishers,
Dordrecht, Boston, London, 1997.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[AH97] R. Alur and T. A. Henzinger. Modularity for timed and hybrid sys-
tems. In Proceedings of the 8th International Conference on Concur-
rency Theory (CONCUR’97), LNCS 1243, pages 74–88, Berlin, 1997.
Springer-Verlag.

[AL92] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In
J. de Bakker, C. Huizing, W. de Roever, and G. Rozenberg, editors,
Real Time: Theory in Practice, LNCS 600, pages 1–27, 1992.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Transac-
tions on Programming Languages and Systems, 17(3):507–534, 1995.

[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Pro-
cessing Letters, 21:181–185, 1985.

[BB03] T. Bolognesi and E. Börger. Abstract state processes. In E. Börger,
A. Gargantini, and E. Riccobene, editors, Abstract State Machines
– Advances in Theory and Applications (ASM2003), LNCS 2589.
Springer-Verlag, 2003.

[BD91] B. Berthomieu and M. Diaz. Modelling and verification of time depen-
dent systems using time petri nets. IEEE Transactions on Software
Engineering, 17(3):259–273, 1991.

[BdS91] F. Boussinot and R. de Simone. The Esterel language. Proceedings of
the IEEE, 79(9):1293–1304, September 1991.

[Ben98] F. Benjes. Verfeinerung in verschiedenen Modellen für Paralleles Rech-
nen. PhD thesis, Universität Mannheim, 1998.

[Ber99] G. Berry. The constructive semantics of pure ESTEREL. Draft Version
3.0. Technical report, Centre de Mathématiques Appliquées, Ecole des
Mines de Paris, 1999.

[Bey01] D. Beyer. Rabbit: Verification of real-time systems. In P. Petters-
son and S. Yovine, editors, Proceedings of the Workshop on Real-Time
Tools (RT-TOOLS 2001, Aalborg), pages 13–21, Uppsala, 2001.

[BG92] G. Berry and G. Gonthier. The ESTEREL synchronous programming
language: Design, semantics, implementation. Science of Computer
Programming, 19(2):87–152, 1992.

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1,
© Springer-Verlag Berlin Heidelberg 2005

216 References

[BH98] E. Börger and J. K. Huggins. Abstract state machines 1988-1998:
Commented ASM bibliography. Bulletin of the EATCS, 64, 1998.

[BLL+96] J. Bengtsson, K. Larsen, F. Larsson, P. Petersson, and W. Yi. Uppaal –
a tool suite for automatic verification of real-time systems. In R. Alur,
T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, LNCS
1066, pages 232–243, Berlin, 1996. Springer-Verlag.

[Bör98] E. Börger. High level system design and analysis using abstract state
machines. In Hutter, Stephan, Traverso, and Ullmann, editors, Current
Trends in Applied Formal Methods (FM-Trends 98), LNCS, 1998.

[BR98] D. Beyer and H. Rust. Modeling a production cell as a distributed
real-time system with cottbus timed automata. In H. König and
P. Langendörfer, editors, FBT’98: Formale Beschreibungstechniken für
verteilte Systeme, pages 148–159. Shaker Verlag Aachen, 1998.

[BR99] D. Beyer and H. Rust. Concepts of Cottbus Timed Automata. In
K. Spies and B. Schätz, editors, FBT’99: Formale Beschreibungstech-
niken für verteilte Systeme, pages 27–34. Herbert Utz Verlag München,
1999.

[BR00a] D. Beyer and H. Rust. Modular modelling and verification with Cot-
tbus Timed Automata. In C. Rattray and M. Sveda, editors, Pro-
ceedings of the IEEE/IFIP Joint Workshop on Formal Specifications
of Computer Based Systems (FSCBS 2000), pages 17–24, Edinburgh,
2000.

[BR00b] D. Beyer and H. Rust. A tool for modular modelling and verification
of hybrid systems. In A. Crespo and J. Vila, editors, Proceedings of
the 25th IFAC Workshop on Real-Time Programming (WRTP 2000),
pages 181–186, Oxford, 2000. Elsevier Science.

[BR01] D. Beyer and H. Rust. Cottbus timed automata: Formal definition and
semantics. In C. Rattray, M. Sveda, and J. Rozenblit, editors, Proceed-
ings of the 2nd IEEE/IFIP Joint Workshop on Formal Specifications
of Computer-Based Systems (FSCBS 2001, Washington, D.C., April
2001), pages 75–87, Stirling, 2001.

[BS97a] D. Beauquier and A. Slissenko. On semantics of algorithms with con-
tinuous time. Technical Report 97-15, Université de Paris 12 – Val de
Marne, October 1997.

[BS97b] D. Beauquier and A. Slissenko. The railroad crossing problem: To-
wards semantics of timed algorithms and their model checking in high
level languages. In M. Bidoit and M. Dauchet, editors, Proc. of TAP-
SOFT’97: Theory and Practice of Software Development, 7th Int’l
Joint Conference CAAP/FASE, LNCS 1214, pages 202–212, 1997.

[BS03] E. Börger and R. Stärk. Abstract State Machines. A method for high-
level system design and analysis. Springer-Verlag, 2003.

[CHR91] Z. Chaochen, C. Hoare, and A. P. Ravn. A calculus of durations.
Information Processing Letters, 40:269–276, 1991.

[Dij65] E. W. Dijkstra. Programming considered as human activity. Proc.
IFIP-Congress 1965:New York, pages 213–217, May 1965.

[Dij75] E. W. Dijkstra. Guarded commands, nondeterminacy, and formal
derivation of programs. Communications of the ACM, 18(8):453–457,
1975.

[DLP79] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social processes and
proofs of theorems and programs. Communications of the ACM,
22(5):271–280, May 1979.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS.
In R. Alur, T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems
III, LNCS 1066, pages 208–219, Berlin, 1996. Springer-Verlag.

References 217

[dR98] W.-P. de Roever. The need for compositional proof systems: A survey.
In W.-P. de Roever, H. Langmaack, and A. Pnueli, editors, Composi-
tionality: The Significant Difference, LNCS 1536, pages 1–22, Berlin,
1998. Springer-Verlag.

[DS94] M. Diaz and P. Sénac. Time stream petri nets, a model for timed mul-
timedia information. In Proc. 15th Int. Conf. Application and Theory
of Petri Nets 1994, LNCS 815, pages 219–238, Berlin, 1994. Springer-
Verlag.

[FMM94] M. Felder, D. Mandrioli, and A. Morzenti. Proving properties of real-
time systems through logical specifications and petri net models. IEEE
Transactions on Software Engineering, 20(2):127–141, February 1994.

[FP78] N. Francez and A. Pnueli. A proof method for cyclic programs. Acta
Informatica, 9:133–157, 1978.

[Fra86] N. Francez. Fairness. Springer-Verlag, New York, Berlin, Heidelberg,
Tokyo, 1986.

[GH96] Y. Gurevich and J. K. Huggins. The railroad crossing problem: An
experiment with instantaneous actions and immediate reactions. In
H. Kleine-Büning, editor, Computer Science Logics. Selected Papers
from CSL’95, LNCS 1092, pages 266–290. Springer-Verlag, 1996.

[GM95] Y. Gurevich and R. Mani. Group membership protocol: Specifica-
tion and verification. In E. Börger, editor, Specification and Validation
Methods, pages 295–328. Oxford University Press, 1995.

[GMM99] A. Gargantini, D. Mandrioli, and A. Morzenti. Dealing with zero-time
transitions in axiom systems. Information and Computation, 150:119–
131, 1999.

[Gor95] M. Gordon. The semantic challenge of verilog hdl. In Proceedings of the
Tenth Annual IEEE Symposium on Logic in Computer Science, 1995.

[Gur88] Y. Gurevich. Logic and the challenge of computer science. In E. Börger,
editor, Current Trends in Theoretical Computer Science, pages 1–57.
Computer Science Press, 1988.

[Gur93] Y. Gurevich. Evolving algebras: An attempt to discover semantics. In
G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical
Computer Science, pages 266–292. World Scientific, 1993.

[Gur95a] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University
Press, 1995.

[Gur95b] Y. Gurevich. Platonism, constructivism, and computer proofs vs.
proofs by hand. Bulletin of the EATCS, 57:145–166, October 1995.

[Gur97] Y. Gurevich. May 1997 draft of the ASM guide. Technical Report
CSE-TR-337-97, University of Michigan, EECS Department, 1997.

[Gur99] Y. Gurevich. Sequential ASM thesis. Technical Report MSR-TR-99-09,
Microsoft Research, Redmond, 1999.

[GY76] S. L. Gerhart and L. Yelowitz. Observations of fallibility in applica-
tions of modern programming methodologies. IEEE Transactions on
Software Engineering, 2(3):195–207, September 1976.

[Hal90] A. Hall. Seven myths of formal methods. IEEE Software, pages 11–19,
September 1990.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8:231–274, 1987.

[HCP91] N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–
1320, September 1991.

218 References

[HG92] C. Huizing and R. Gerth. Semantics of reactive systems in abstract
time. In J. de Bakker, C. Huizing, W. de Roever, and G. Rozenberg, ed-
itors, Real Time: Theory in Practice, LNCS 600, pages 291–314, 1992.

[HHWT95] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech.
In Proceedings of the First Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), LNCS 1019, pages
41–71. Springer-Verlag, 1995.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice Hall, Hemel
Hempstead, 1985.

[Hoo92] J. Hooman. Compositional verification of real-time systems using ex-
tended hoare triples. In J. de Bakker, C. Huizing, W. de Roever, and
G. Rozenberg, editors, Real Time: Theory in Practice, LNCS 600, pages
252–290, 1992.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In
K. R. Apt, editor, Logics and Models of Concurrent Systems, pages
477–498. Springer-Verlag, Berlin, 1985.

[HPZ97] M. Heiner and L. Popova-Zeugmann. Worst-case analysis of con-
current systems with duration interval petri nets. In E. Schieder
and D. Abel, editors, Entwurf komplexer Automatisierungssysteme
1997, Proc. 5. Fachtagung EKA’97, IfRA 1997, pages 162–179, Braun-
schweig, May 1997.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Machines. Addison Wesley, Reading, 1979.

[Jos92] M. Joseph. Problems, promises and performance: Some questions
for real-time system specification. In J. de Bakker, C. Huizing,
W. de Roever, and G. Rozenberg, editors, Real Time: Theory in Prac-
tice, LNCS 600, pages 315–324, 1992.

[Koy92] R. Koymans. (real) time: A philosophical perspective. In J. de Bakker,
C. Huizing, W. de Roever, and G. Rozenberg, editors, Real Time: The-
ory in Practice, LNCS 600, pages 353–370, 1992.

[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems, 5(1):1–11, 1987.

[Lam94a] L. Lamport. Introduction to TLA. Technical Report 1994-001, Digital
Systems Research Center, 1994.

[Lam94b] L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[Lam97] L. Lamport. Composition: A way to make proofs harder. Technical Re-
port SRC Technical Note 1997-030a, digital Systems Research Center,
1997.

[LBBG85] P. LeGuernic, A. Benveniste, P. Bournai, and T. Gautier. SIGNAL:
A data-flow oriented language for signal processing. Technical Report
RR 378, INRIA, 1985.

[LGLL91] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programming
real time applications with signal. Proceedings of the IEEE, 79(9):1321–
1336, September 1991.

[LL95] C. Lewerentz and T. Lindner, editors. Formal Development of Reactive
Systems. LNCS 891. Springer-Verlag, Berlin, Heidelberg, 1995.

[LM96] A. Lötzbeyer and R. Mühlfeld. Task description of a flexible production
cell with real time properties. FZI Technical Report, 1996.

[LMS86] R. Lipsett, E. Marschner, and M. Shahdad. VHDL–the language. IEEE
Design and Test, pages 28–41, 1986.

[LR94] D. Landers and L. Rogge. Nichtstandard Analysis. Springer-Verlag,
Berlin, 1994.

References 219

[LSVW96] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O
automata. In R. Alur, T. A. Henzinger, and E. D. Sontag, editors,
Hybrid Systems III, LNCS 1066, pages 496–510, Berlin, 1996. Springer-
Verlag.

[LT87] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings of the 6th Annual ACM Symposium
on Principles of Distributed Computing, pages 137–151. ACM, August
1987.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San
Francisco, 1996.

[Mar89] F. Maraninchi. Argonaute: Graphical description, semantics and veri-
fication of reactive systems by using a process algebra. In International
Workshop on Automatic Verification Methods for Finite State Systems,
LNCS 407. Springer-Verlag, 1989.

[Mar90] F. Maraninchi. Argos, une langage graphique pour la conception, la
description et la validation des systèmes réactives. Master’s thesis,
Université Joseph Fourier, Grenoble, 1990.

[McM93] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[MF76] P. M. Merlin and D. J. Farber. Recoverability of communication proto-
cols – implications of a theoretical study. IEEE Trans. Comm., 24(9),
1976.

[Mil75] H. D. Mills. How to write correct programs and know it. Int. Conf. on
Reliable Software:Los Angeles, pages 363–370, April 1975.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[MMS90] L. E. Moser and P. M. Melliar-Smith. Formal verification of safety-

critical systems. Software – Practice and Experience, 20(8):799–821,
August 1990.

[Mos85] B. C. Moszkowski. A temporal logic for multilevel reasoning about
hardware. IEEE Computer, 18(2):10–19, 1985.

[Mos90] P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Vol. B, pages 575–631. Elsevier,
Amsterdam, 1990.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems: Specification. Springer-Verlag, New York, 1992.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, New York, 1995.

[Nau82] P. Naur. Formalization in program development. BIT, pages 437–453,
1982.

[Nau85] P. Naur. Intuition in software development. Proc. TAPSOFT: Formal
Methods and Software Development, 2:60–79, March 1985.

[Nel77] E. Nelson. Internal set theory, a new approach to nonstandard analysis.
Bulletin American Mathematical Society, 83:1165–1198, 1977.

[NS92] X. Nicollin and J. Sifakis. An overview and synthesis on timed process
algebras. In J. de Bakker, C. Huizing, W. de Roever, and G. Rozen-
berg, editors, Real Time: Theory in Practice, LNCS 600, pages 526–548,
1992.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verifica-
tion for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107–125, February
1995.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, December
1972.

220 References

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für
Instrumentelle Mathematik, Bonn, 1962.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 46–57.
IEEE Computer Science Press, 1977.

[Pop91] L. Popova. On time petri nets. J. Inform. Process. Cybernet. EIK,
27(4):227–244, 1991.

[Ram74] C. Ramchandani. Analysis of asynchronous concurrent systems by
timed petri nets. Technical Report TR 120, MIT, 1974. Project MAC.

[Rei86] W. Reisig. Petrinetze. Springer, Berlin, 1986.
[Rob88] A. Robert. Nonstandard Analysis. Wiley and Sons, New York, Chich-

ester, Brisbane, 1988.
[Rob96] A. Robinson. Non-standard Analysis. Princeton University Press,

Princeton/New Jersey, 1996.
[Rus94] H. Rust. Zuverlässigkeit und Verantwortung. Vieweg, Braunschweig,

Wiesbaden, 1994.
[Sko34] T. Skolem. Über die Nichtcharakterisierbarkeit der Zahlreihe mittels

endlich oder abzählbar unendlich vieler Aussagen mit ausschließlich
Zahlvariablen. Fund.Math., 23:150–161, 1934.

[TM95] D. E. Thomas and P. R. Moorby. The Verilog Hardware Description
Language. Kluwer Academic Publishers, 1995.

[Tur37] A. M. Turing. On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math. Soc., 2(42):230–265, 1937.

[vdB94] M. von der Beeck. A comparison of statecharts variants. In H. Lang-
maack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques
in Real-Time and Fault-Tolerant Systems, LNCS 863, pages 128–148,
Berlin et al., 1994. Springer-Verlag.

[vN66] J. von Neumann. The Theory of Self-Reproducing Automata. Univer-
sity of Illinois Press, 1966.

[Vol79] R. Vollmar. Algorithmen in Zellularautomaten. B. G. Teubner,
Stuttgart, 1979.

[Win88] G. Winskel. An introduction to event structures. In J. de Bakker,
W. de Roever, and G. Rozenberg, editors, Linear Time, Branching
Time, and Partial Orders in Logics and Models of Concurrency, LNCS
354, pages 364–397. Springer-Verlag, Berlin, 1988.

[Win90] J. M. Wing. A specifier’s introduction to formal methods. Computer,
pages 8–24, September 1990.

[Wir71] N. Wirth. Program development by stepwise refinement. Communica-
tions of the ACM, 14(4):221–227, April 1971.

[Zei76] B. P. Zeigler. Theory of Modelling and Simulation. Wiley, New York,
1976.

Index

(b ? x1 : x2), selection, 211
A → B, functions from A to B,

212
[], empty interval, 66
[p], p an invariant of nonempty in-

terval, 66
�p, for all subintervals, 67
�p, for one subinterval, 67
◦p, next position, 67
�·�, round up, 213
�·�, round down, 213
[[r]], discrete semantics of an ASM

rule, 36
[[r]]h, hybrid semantics of an

STASM rule, 50
[[r]]d, condition for definedness of

an ASM rule, 36
[[t]]c, semantics of t in context c,

213
[[t]](q,a,I), semantics of interval

term, 65
[[t]](q,a,i), semantics of focused

terms, 65
A, sequence of A-elements, 212
{p}, p an invariant, 66
f [a �→ b], function override by

mapping, 212
f [g], function override by function,

212
f ↓ D, function restriction, 211
p1; p2, chop operator, 65
p1|p2, bar term, 65
x ∼ x′, same magnitude, 211
x � x′, infinitesimal difference,

211

∀finxP , 211
∀stxP , 211
∀st finxP , 211
abstract state machine, definition,

39
accountability of a step to some

rule, 69
action, 31
– vacuous, 31
action set, 33
action system, 32
appreciable, 26
appreciable(·), 211
ASM, 39
ASM program, 36
ASM rule, 36
assignment rule, 37

ba(R, n), bounded activity, 110
bar term, 65
bi-total, 213
bitotal(A, B), 213
bounded activity, 110

causal compatibility of automata,
88

CHOOSE rule, 38
chop operator, 65
compatibility of rules, 37
compatibility of structured I/O

automata, 86
conditional rule, 37
consistency of functions, 212
continuous symbols, 50
controlled locations, 86

H. Rust, Operational Semantics for Timed Systems, DOI 10.1007/978-3-540-32008-1,
© Springer-Verlag Berlin Heidelberg 2005

222 Index

count terms, 65

deadline, 97
derived symbols, 41
discrete actions, 56
discrete steps, 56
dom(f), domain of a function, 212
doubly timed nets, 145
dynamic symbols, 41

ε(S), Hilbert’s choice function, 212
∃finxP , 211
∃stxP , 211
∃st finxP , 211
enabled(R), 66
enabledness of a rule, 36
EXISTS term, 35
extended state, 34

first, 66
Fischer’s protocol, 131
focused predicates, 65
FORALL term, 35
formal methods, essence, 10

Gurevich’s thesis, 42

HALT rule, 37
hasChoice(R), 66
head symbol of a term, 35
hesitation, 52

I/O automaton, 83
idealization, axiom of, 24
infinite activity, 16
infinitesimal, 26
infinitesimal(·), 211
infinitesimals
– short historical overview, 23
initial interval, 212
interleaving NTASM model, 80
internal set theory, 24
interval, 212
interval sequences, 17
interval term, 64
intervals(N0), 212

IST, internal set theory, 24

�, length of interval, 66
λ(x : A)(e), 211
la(R), 69
LET term, 35
limited, 26
limited(·), 211
limited activity, 69
liveness property, 79

magnitude or numbers, 114
mapping, 212
marking, 141
Mealy automaton, 83

N, 212
ℵ0, 211
N0, 212
Nelson, 24
non-standard ASM rule, 53
non-standard symbol, 53
non-standard time ASM rule, 54
nondeterministic selection rule, 37
NTASM rule, 54

ox, the standard part, 27
ω, first transfinite ordinal, 212
open system, 107

P(S), set of subsets, 212
PCD, 18
Petri net, 141
piecewise constant derivative, 18
places, 141
post-place, 141
pre-place, 141
property, 79

R, 212
R+, 212
R

+
0 , 212

ran(f), range of a function, 212
reachability of a state, 32
receptive ASM rule, 108
receptivity, 107

Index 223

right-open timed automaton, 168
Robinson, 23
rule predicate, 65
run of a transition system, 64
run of action system, 32

safety property, 79
selection term, 35
semantics of focused terms, 65
shadow, 27
simulation of an STASM rule by

an NTASM rule, 58
SKIP rule, 36
standard part, 27
standard symbol, 53
standard tim ASM rule, 49
standardization, axiom of, 25
STASM rule, 49
state, 31
static symbols, 41
strong fairness, 68
strong well-behavedness of rules,

61
structured I/O automaton, 86
symbol term, 35
synchonous execution rule, 37
synchronous composition of struc-

tured I/O automata, 87
synchronous NTASM model, 95

T, NTASM time domain, 28
taken(R), 66

takenAlone(R), 66
takenNonvacuously(R), 67
takenVacuously(R), 66
term, 35
time actions, 56
time Petri nets, 143
timed automaton, 166
timed Petri nets, 143
trajectories, 18
transfer, axiom of, 25
transition system, 32
transition system, canonical for ac-

tion system, 32
transitions, 141
trivial update, 33

·U·, until, 66
unbounded activity, 17
update, 33
urgency, 52

υ, the vacuous action, 31

·W·, weak until, 67
weak fairness, 68
well behavedness of rules, 59

Z, 212
Zeno behavior, 16
ZFC, 24

	Foreword
	Preface
	Contents
	1. Overview
	2. Context: Formal Methods in Software Engineering
	2.1 The Place of Formal Methods in Software Engineering
	2.2 The Role of Mathematics
	2.3 Conditions for Using Inconsistencies Productively
	2.4 Two Sides of Machine Support for Proofs
	2.5 The Essence of Formal Methods in Software Engineering
	2.6 Specific and General Formalisms
	2.7 Goals and Consequences from the Analysis

	Part I Basic Concept
	3. Models of Time and of System Behaviors
	3.1 Dense and Discrete Time Domains
	3.2 Interval Sequences and Subclasses of Hybrid Systems
	3.3 The Main Idea: Use of Infinitesimals
	3.4 Summary

	4. Infinitesimals
	4.1 The Axiom of Idealization
	4.2 The Axiom of Standardization
	4.3 The Axiom of Transfer
	4.4 More Structure Discerned in Classical Objects
	4.5 Real-Time Systems with Constant Infinitesimal Steps
	4.6 Summary

	5. Operational Semantics of Discrete Systems
	5.1 Action Systems
	5.2 Abstract State Machines
	5.2.1 Some Introductory Examples of ASM Rules
	5.2.2 Terms

	5.3 Effectivity
	5.4 Classes of Symbols
	5.5 Interaction with the Environment
	5.6 Gurevich’s Thesis
	5.6.1 Elements of Programming Languages
	5.6.2 Operationality
	5.6.3 No Complications Induced by Formalism

	5.7 Comparison to Other Formalisms for Discrete Systems
	5.7.1 Updates vs. Transitions
	5.7.2 State Based vs. Event Based Systems
	5.7.3 Structured vs. Unstructured States
	5.7.4 Explicit vs. Implicit Nondeterminism
	5.7.5 Operationality vs. Declarativity

	5.8 Summary

	6. Defining Hybrid Systems with ASMs
	6.1 ASMs for the Definition of Classical Hybrid Systems
	6.1.1 Standard Time ASM Rules and Hybrid Transition Systems
	6.1.2 Infinite Activity
	6.1.3 Hesitation and Urgency

	6.2 ASMs with Infinitesimal Step Width
	6.2.1 A Note on Zeno-ness in NTASMs

	6.3 Simulation of an STASM by an NTASM
	6.4 Well-Behaved Rules
	6.5 Summary

	7. A Notation for a Temporal Logic
	7.1 Semantic Domain
	7.2 Interval Terms and Focused Predicates
	7.3 Abbreviations
	7.4 Examples of Valid Formulas
	7.5 Fairness, Limited Activity and Other Example Specifications
	7.6 On Accountability of a Step to Some Rule, and an Application to Synchronous Systems
	7.7 Summary

	Part II Modelling Strategies
	8. Concurrency and Reactivity: Interleaving
	8.1 The Interleaving Approach to Concurrency
	8.2 Some Remarks on Fairness
	8.3 Properties
	8.4 Interleaving NTASM Models
	8.5 On the Appropriateness of the Interleaving Abstraction
	8.6 Summary

	9. The Synchronous Approach to Concurrency
	9.1 Reactive Systems as Mealy Automata
	9.2 Composing I/O Automata
	9.3 Micro-steps of Synchronous Systems as ASMs
	9.4 Environment Interaction and the Synchrony Hypothesis
	9.5 Synchronous NTASM Models
	9.6 Summary

	10. Deadlines
	10.1 Synchronous NTASM Systems
	10.2 Interleaving NTASM Systems
	10.3 Admitting Infinitesimal Delays
	10.4 Summary

	11. Open Systems
	11.1 Receptivity Simplified
	11.2 (m,n)-Receptivity
	11.3 Summary

	12. Making Use of Different Magnitudes of Reals
	12.1 The Magnitude Concept
	12.2 Rule Schemes and the Ripple Counter Example
	12.3 Making Delays Explicit
	12.4 Analyzing a Logical Circuit for Hazards
	12.5 Modelling Missing Knowledge Explicitly
	12.6 Hazards Resulting from the Infinitesimal Discretization
	12.7 Summary

	Part III Applications
	13. A Case Study: Fischer’s Protocol
	13.1 A Hybrid Abstract State Machine Describing Fischer’s Protocol
	13.2 Specification and Proof of the Mutex Property
	13.3 Infinitesimality of Step-Width and Plausibility of Assumptions
	13.4 Summary

	14. An ASM Meta-model for Petri Nets with Timing
	14.1 ASM Models of Discrete Nets
	14.2 Quantitatively Timed Nets
	14.3 STASM Models of Doubly Timed Nets
	14.3.1 An Interleaving Dynamics for Doubly Timed Nets
	14.3.2 A Maximal Progress Dynamics for Doubly Timed Nets
	14.3.3 Discussion of the STASM Models of Doubly Timed Nets

	14.4 Comparison of STASM and NTASM Semantics
	14.4.1 Well-Behavedness of the Interleaving Dynamics Rule for Doubly Timed Petri Nets
	14.4.2 A Well-Behaved Rule for Interleaving Dynamics of Doubly Timed Petri Nets

	14.5 Summary

	15. An ASM Meta-model for Timed and Hybrid Automata
	15.1 An STASM Model of Hybrid Automata
	15.2 Comments on the Modelling Choices
	15.3 Timed Automata and Their Well-Behavedness
	15.4 Well-Behavedness of Hybrid Automata
	15.5 Summary

	16. A Production Cell with Timing
	16.1 Introduction
	16.2 Task Description
	16.3 Requirements to Be Fulfilled by the Control Program
	16.4 Direct Consequences from the Task Description
	16.5 An Abstract Control Program
	16.6 Schedules for Variable-Order Programs
	16.7 One Crane, Order of Processing Units Fixed
	16.8 Executing the Current Schedule
	16.9 Two Cranes, Order of Processing Units Fixed
	16.9.1 Splitting a Schedule into Segments
	16.9.2 The Active and the Passive Crane and Their Tasks
	16.9.3 Resting Position, Target Position and Initialization
	16.9.4 Specifics of Crane Behavior

	16.10 Are the System Properties Ensured?
	16.11 Summary

	Part IV Summary
	17. Summary

	A. Common Notation
	A.1 Non-standard Quantifiers and Predicates
	A.2 Various Kinds of Expressions
	A.3 Various Expressions for Functions and Sets of Functions
	A.4 Some Common Sets
	A.5 Some Definitions

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

